Electromagnetic wave propagation at classical material/metamaterial interfaces -Mathematical aspects

ENSTAParisTech

L. Chesnel with A.S. Bonnet-Ben Dhia and P. Ciarlet Jr. POEMS, UMR 7231 CNRS-ENSTA-INRIA, Ecole Polytechnique, Paris, France

Setting of the problem

- \triangleright Maxwell time-harmonic problem (electric field) set in a heterogeneous medium Ω like below (2D example).
 - ▶ At a given frequency,

$$\Re e(\mu_2^\eta)=\mu_2<0$$

$$\Re e(\epsilon_2^\eta) = \epsilon_2 < 0$$

 \triangleright Dissipation modeled by η

$$\mu^{\eta} = \mu \left(1 + i\operatorname{sign}(\mu) \frac{\eta}{\eta}\right)$$

$$\epsilon^{\eta} = \epsilon (1 + i \operatorname{sign}(\epsilon) \eta)$$

 $\int n^{\bullet} \text{ Define } X_N(\Omega, \epsilon^{\eta}) = \left\{ E \in L^2(\Omega)^3 \, | \, \operatorname{curl} E \in L^2(\Omega)^3, \\ \operatorname{div} \epsilon^{\eta} E \in L^2(\Omega) \text{ and } E imes n = 0 \text{ on } \partial \Omega \right\}$

Find
$$E \in X_N(\Omega, \epsilon^\eta)$$
 such that :
$$(\mathcal{P}^\eta) \left[\frac{1}{\mu^\eta} \mathrm{curl} \, E \right] - \omega^2 \epsilon^\eta E = F \ \ \mathrm{in} \ \Omega$$

► Augmented variational formulation (continuous Galerkin FE) :

Find
$$E \in X_N(\Omega, \epsilon^{\eta})$$
 such that :
$$\int_{\Omega} \frac{1}{\mu^{\eta}} \operatorname{curl} E \cdot \operatorname{curl} \overline{V} + s \operatorname{div} \epsilon^{\eta} E \operatorname{div} \overline{\epsilon^{\eta} V} d\Omega$$

$$-\omega^2 \int_{\Omega} \epsilon^{\eta} E \cdot \overline{V} d\Omega = \int_{\Omega} F \cdot \overline{V} d\Omega, \ \forall V \in X_N(\Omega, \epsilon^{\eta})$$

Questions:

- ▶ Is the problem to be solved well-posed?
- ▶ How to compute a numerical approximation of the solution?
- ▶ Influence of dissipation?

Well - posedness?

ightharpoonup Coerciveness over $X_N(\Omega,\epsilon^\eta)$ of

$$a(E,V) = \int_{\Omega} rac{1}{\mu^{\eta}} \operatorname{curl} E \cdot \operatorname{curl} \overline{V} + s \operatorname{div} \epsilon^{\eta} E \operatorname{div} \overline{\epsilon^{\eta} V} d\Omega$$

- \checkmark Ok provided $\eta \neq 0$ (take $s = (|\epsilon^{\eta}|^2 \mu^{\eta})^{-1}$)
- ► Compactness of the term

$$b(E,V) = -\omega^2 \int_\Omega \epsilon^\eta \, E \cdot \overline{V} d\Omega$$

 \checkmark Ok as the canonical embedding of $X_N(\Omega,\epsilon^{\eta})$ into $L^2(\Omega)^3$ is compact when $\eta \neq 0$ (extension of [Weber'80] result)

If $\eta \neq 0$ (dissipative case)

- \triangleright Coercive+compact framework \Rightarrow problem (\mathcal{P}_{V}^{η}) is well-posed
- ▶ Numerical convergence (assumption : no singular electric fields)

What if $\eta = 0$?

► EXAMPLE

Consider a symmetric domain Ω with

$$\kappa_{\mu}=\mu_{1}/\mu_{2}=-1 \ \kappa_{\epsilon}=\epsilon_{1}/\epsilon_{2}=-1$$

Dielectric Dielectric Metamaterial $\mu_1^0 > 0 \qquad \qquad \mu_2^0 = -\mu_1^0 < 0$ $\mu_1^0 > 0$

- \triangleright Infinite dimensional kernel \Rightarrow scalar problem ill-posed
- \triangleright The embedding of $X_N(\Omega, \epsilon)$ into $L^2(\Omega)^2$ is not compact
- ▶ In general, FE error estimation

$$\left\|E^{\eta}-E_h^{\eta}
ight\|_{X_N} \leq rac{C\,h^{s-1}}{\eta} \left\|E^{\eta}
ight\|_{PH^s(\Omega)}$$

When $\eta \to 0$, not an optimal estimation.

If $\eta = 0$ (dissipationless case)

⚠ Usual techniques fail and classical results no longer hold

Results and conjectures for the dissipationless Maxwell problem

If Σ is smooth with $\kappa_{\mu} \neq -1$ and $\kappa_{\epsilon} \neq -1$

- The embedding of $X_N(\Omega, \epsilon)$ into $L^2(\Omega)^3$ is still compact $a(\cdot, \cdot)$ is stable (T-coercive) when $\kappa_{\mu} \notin I_{\mu} = \left[\kappa_{\mu}^{inf}; \kappa_{\mu}^{sup}\right]$ with $-1 \in I_{\mu}$ [Bonnet-Ciarlet Jr.-Zwölf'09], [Chesnel, work in progress]
- Conjecture: (\mathcal{P}_{V}^{0}) is well-posed and standard numerical methods converge

If Σ is piecewise–smooth (with corners) with $\kappa_{\mu} \neq -1$ and $\kappa_{\epsilon} \neq -1$

- \checkmark The embedding of $X_N(\Omega, \epsilon)$ into $L^2(\Omega)^2$ (2D) is compact except for a finite set of κ_{ϵ} (Mellin techniques) [Bonnet-Dauge-Ramdani'99], [Chesnel, work in progress]
- lacksquare If $\kappa_{\mu}
 otin I_{\mu} = \left[\kappa_{\mu}^{inf}; \kappa_{\mu}^{sup}
 ight]$ with $-1 \in I_{\mu}$
 - Conjecture: (\mathcal{P}_{V}^{0}) is well-posed and standard numerical methods converge
- ightharpoonup If $\kappa_{\mu} \in I_{\mu}$
 - Conjecture: (\mathcal{P}_{V}^{0}) is ill-posed (solution with infinite energy)

Question: Are the models derived from physics still relevant?

