Approximate Models for the Scattering by a Thin Periodic Layer
Bérangère Delourme, Houssem Haddar, Patrick Joly

Context
- Thickness of the ring δ. Angular periodicity \(\approx \delta \).
- \(\delta \approx \varepsilon \approx \delta < R_0 \).
- Difficulty: two different scales \(\delta, \varepsilon \).

Goal: replacing the periodic ring by an approximate transmission condition across \(\Gamma \).
Method:
- Asymptotic expansion of the solution with respect to the small parameter \(\delta \): matched asymptotic expansion / homogenisation (see [1], [2],[3]).
- Construction of stable approximate models using this expansion.

Two Dimensional Model Problem

Description

Far field:

(1) \(\mathbf{u}^\ast = \sum_{n=1}^{N} \mathbf{u}_n \mathbf{e}_n (r, \theta) \)

Near field:

(2) \(\mathbf{u} = \sum_{n=1}^{N} \mathbf{u}_n (V, \theta) \)

\(\mathbf{u}_n \Delta \mathbf{u} + \omega^2 \mathbf{u}_n = f_{1n} \) in \(\Omega \)

\(\mathbf{u}_n \Delta \mathbf{u} + \omega^2 \mathbf{u}_n = f_{2n} \) in \(\Omega \)

\(\mathbf{u}_n \Delta \mathbf{u} + \omega^2 \mathbf{u}_n = f_{3n} \) in \(\Omega \)

\(\mathbf{u}_n \Delta \mathbf{u} + \omega^2 \mathbf{u}_n = f_{4n} \) in \(\Omega \)

\(\mathbf{u}_n \Delta \mathbf{u} + \omega^2 \mathbf{u}_n = f_{5n} \) in \(\Omega \)

+ matching conditions: (1) and (2) coincide in an overlapping area.

Approximate Model
- Main idea: we want to find an approximate well-posed problem whose solution \(\mathbf{u}^\ast \) is closed to the two first terms of the far field asymptotic expansion \(u_1 + u_2 \).
- Method: we use the fact that \(|u_3| \approx |u_1 + u_2| \).

Asymptotic Expansion

- First terms of the far field asymptotic expansion

Numerical Results

Figure 1: Scattering of a plane wave: 'exact' solution, approximate solution, convergence rate

3D Maxwell Problem

Description

\[\text{curl} \left(\frac{1}{\varepsilon} \text{curl} \mathbf{E} \right) - \omega^2 \mathbf{E} = F \text{ in } \Omega \]

\(\mathbf{E} \) \(L_2 \)-periodic in \(x \)

\(\mathbf{E} \) \(L_2 \)-periodic in \(y \)

\[\frac{\partial \mathbf{E}}{\partial n} = 0 \text{ on } \Sigma^\pm \]

For an \(\mathbf{C} \) large enough,
- \(D_1^\mathbf{C} \) and \(D_2^\mathbf{C} \) are positive diagonal matrices.
- \(a^\mathbf{C}, b^\mathbf{C} \) are positive constants.

Existence, Uniqueness, and Stability

Operator \(\mathbf{G} : \mathbf{H}^{1/2} (\partial \Gamma) \rightarrow \mathbf{H} (\partial \Gamma) \)

\[F = \lambda \mathbf{a}^\mathbf{C} \mathbf{u} + \mathbf{b}^\mathbf{C} \mathbf{v} = \int_\Omega \mathbf{F} \cdot \mathbf{v} \quad \forall \mathbf{v} \in \mathbf{X} \]

Assumption: \(\lambda \) is such that \(\mathbf{a}^\mathbf{C} \mathbf{u} + \mathbf{b}^\mathbf{C} \mathbf{v} \) is well defined.

Variational formulation:

\[\mathbf{X} = \left\{ \mathbf{E} \in \mathbf{H} \text{per}(\partial \Omega) \bigg| \left(\mathbf{E}, \mathbf{G} \right) = 0, \mathbf{E} \perp \mathbf{F} \right\} \]

Proposition: \(\mathbf{P}_1 \) is well posed. Moreover, there exists \(C>0 \) and \(\delta_0>0 \) such that, for any \(\delta \leq \delta_0 \),

Main ideas of the proof (based on the ideas of [41])

- Helmholtz decomposition:

\[\mathbf{X} = \mathbf{U} \oplus \mathbf{W} \]

\[S = \left\{ \mathbf{E} \in \mathbf{H} \text{per}(\partial \Omega) \bigg| \left(\mathbf{E}, \mathbf{G} \right) = 0 \right\} \]

- Uniform estimate: proof by contradiction \(\Rightarrow \) uniqueness.

- Existence: compactness of \(\mathbf{U} \) on \(\mathbf{X}_0 \), Fredholm Alternative.

References