ABSTRACT

We analyze the convergence of the gradient descent (GD) method to solve large-scale inverse problems, where the corresponding forward and adjoint problems are solved iteratively by fixed-point iteration methods.

1. INTRODUCTION

We study the linear forward problem:

\[u = Bu + Mσ + F \]

where \(u \in \mathbb{R}^n \) is the state variable; \(σ \in \mathbb{R}^m \) is the design variable; \(B, M, H \) are real matrices.

Inverse problem: Find \(σ \) from \(f = Hu(σ) \in \mathbb{R}^r \). Assumption: \(p(B) < 1 \) and \(H(I - B)^{-1}M \) is injective.

Method of least squares with the cost function \(J(σ) = \frac{1}{2} ∥Hu(σ) - f∥^2 \).

Lagrangian technique to define the adjoint state \(p = p(µ) \): \(p = B^∗p + H^∗(Hu(σ) - f) \).

Usual GD with fixed step \(τ > 0 \):

\[
\begin{align*}
σ^{n+1} &= σ^n - M^∗p^n, \\
u^{n+1} &= Bu^n + Mσ^n + F, \\
p^{n+1} &= B^∗p^n + H^∗(Hu^n - f).
\end{align*}
\]

Converge to the usual GD as \(k \to ∞ \).

Shifted GD with fixed step \(τ > 0 \):

\[
\begin{align*}
σ^{n+1} &= σ^n - M^∗p^n, \\
u^{n+1} &= Bu^n + Mσ^n + F, \\
p^{n+1} &= B^∗p^n + H^∗(Hu^n - f).
\end{align*}
\]

Converge to the shifted GD as \(k \to ∞ \).

Wait for \(σ \) before updating \(u, p \).

2. MULTI-STEP ONE-SHOT ALGORITHMS

<table>
<thead>
<tr>
<th>Method</th>
<th>Usual GD</th>
<th>Shifted GD</th>
<th>k-step one-shot</th>
<th>Shifted k-step one-shot</th>
</tr>
</thead>
<tbody>
<tr>
<td>(σ)</td>
<td>(σ^n - M^∗p^n)</td>
</tr>
<tr>
<td>(u)</td>
<td>(u^n - Bu^n + Mσ^n + F)</td>
<td>(u^n - Bu^n + Mσ^n + F)</td>
<td>(u^n - Bu^n + Mσ^n + F)</td>
<td>(u^n - Bu^n + Mσ^n + F)</td>
</tr>
<tr>
<td>(p)</td>
<td>(p^n = B^∗p^n + H^∗(Hu^n - f))</td>
<td>(p^n = B^∗p^n + H^∗(Hu^n - f))</td>
<td>(p^n = B^∗p^n + H^∗(Hu^n - f))</td>
<td>(p^n = B^∗p^n + H^∗(Hu^n - f))</td>
</tr>
</tbody>
</table>

Converge to the usual GD as \(k \to ∞ \). Converge to the shifted GD as \(k \to ∞ \).

3. CONVERGENCE ANALYSIS IN 1D

Necessary and sufficient condition for the convergence

\[
\begin{align*}
τ &< \frac{2(1-k)}{\|h\|_M^2}, \quad τ < \frac{(1-δ)}{\|h\|_M^2}, \quad τ < \frac{1}{\nu (k, h)} \frac{1}{\|h\|_M^2}, \quad τ < 1 - (1 - δ) τ \frac{1}{\|h\|_M^2}.
\end{align*}
\]

where \(k \) and \(δ \) are plotted below (\(m = h = 1 \)):

4. MAIN RESULTS

Theorem 1. \(\exists r > 0 \) such that \(k \)-step one-shot converges. If \(0 ≤ ∥B∥ < 1 \), take

\[
τ < \frac{ψ(k_r ∥B∥)}{∥H∥^2 ∥M∥^2}. \quad ψ \text{ is an explicit function.}
\]

Theorem 2. \(\exists r > 0 \) such that shifted \(k \)-step one-shot converges. If \(0 ≤ ∥B∥ < 1 \), take

\[
τ < \frac{χ(k_r ∥B∥)}{∥H∥^2 ∥M∥^2}. \quad χ \text{ is an explicit function.}
\]

5. NUMERICAL RESULTS FOR A TOY PROBLEM

Linearized conductivity inverse problem

Medical application to EIT (Electrical Impedance Tomography).

Forward problem \((δ > 0) \):

\[
\begin{align*}
-(1 + δ) \ \operatorname{div}(σ\nabla u) + u &= - \operatorname{div}(σ\nabla u_0) \text{ in } Ω, \\
\partial u / ∂ν &= 0, \quad σ = 0 \text{ on } ∂Ω
\end{align*}
\]

where \(u_0 \) satisfies

\[
\begin{align*}
-(1 + δ) \ \operatorname{div}(σ\nabla u_0) + u_0 &= 0 \text{ in } Ω, \\
\partial u_0 / ∂ν &= g \text{ on } ∂Ω.
\end{align*}
\]

Inverse problem: Recover \(σ \) from the measurement \(f = Hu(σ) \coloneqq u(σ) |_{∂Ω} \).

Log-plot of the cost function for each methods at different iterations:

6. REFERENCES