Stability and robustness of nonlinear predictive control without stabilizing terminal constraints

Lars Grüne
Mathematisches Institut, Universität Bayreuth

in collaboration with

Anders Rantzer (Lund)
Nils Altmüller (Bayreuth), Thomas Jahn (Bayreuth), Jürgen Pannek (Perth), Karl Worthmann (Bayreuth)

supported by DFG priority research program 1305 “Control theory for digitally networked dynamical systems”

SADCO Kick-Off Meeting, Paris, March 2011
Setup

We consider nonlinear discrete time control systems

\[x(n + 1) = f(x(n), u(n)) \]

with \(x(n) \in X, u(n) \in U, \) \(X, U \) arbitrary metric spaces
Setup

We consider **nonlinear discrete time control systems**

\[x(n + 1) = f(x(n), u(n)) \]

with \(x(n) \in X, u(n) \in U, \quad X, U \) arbitrary metric spaces

Problem: feedback stabilization
Setup

We consider nonlinear discrete time control systems

\[x(n + 1) = f(x(n), u(n)) \]

with \(x(n) \in X \), \(u(n) \in U \), \(X \), \(U \) arbitrary metric spaces

Problem: Optimal feedback stabilization via infinite horizon optimal control:

For a running cost \(\ell : X \times U \rightarrow \mathbb{R}_0^+ \) penalizing the distance to the desired equilibrium solve

\[
\min J_\infty(x, u) = \sum_{n=0}^{\infty} \ell(x(n), u(n)) \quad \text{with} \quad u(n) = F(x(n))
\]
Setup

We consider nonlinear discrete time control systems

\[x(n + 1) = f(x(n), u(n)) \]

with \(x(n) \in X, \ u(n) \in U, \ X, U \) arbitrary metric spaces

Problem: Optimal feedback stabilization via infinite horizon optimal control:

For a running cost \(\ell : X \times U \rightarrow \mathbb{R}_0^+ \) penalizing the distance to the desired equilibrium solve

\[
\text{minimize} \quad J_\infty(x, u) = \sum_{n=0}^{\infty} \ell(x(n), u(n)) \quad \text{with} \quad u(n) = F(x(n)),
\]

possibly subject to state/control constraints
Model predictive control

Direct solution of the problem is **numerically hard**

Alternative method: model predictive control (MPC)
Model predictive control

Direct solution of the problem is numerically hard

Alternative method: model predictive control (MPC)

Idea: replace the original problem

\[
\text{minimize } J_\infty(x, u) = \sum_{n=0}^{\infty} \ell(x(n), u(n))
\]

by the iterative (online) solution of finite horizon problems

\[
\text{minimize } J_N(x, u) = \sum_{n=0}^{N-1} \ell(x(n), u(n))
\]
Model predictive control

Direct solution of the problem is numerically hard

Alternative method: model predictive control (MPC)

Idea: replace the original problem

\[
\min J_\infty(x, u) = \sum_{n=0}^{\infty} \ell(x(n), u(n))
\]

by the **iterative** (online) solution of finite horizon problems

\[
\min J_N(x, u) = \sum_{n=0}^{N-1} \ell(x(n), u(n))
\]

We obtain a feedback law \(F_N \) by a moving horizon technique
Model predictive control

Basic moving horizon MPC concept:

At each time instant n, solve for the current state $x = x(n)$

minimize $J_N(x,u) = \sum_{n=0}^{N-1} \ell(x_u(x(n),u(n)),x_u(0))$, $x_u(0) \rightarrow \text{optimal trajectory} x_{\text{opt}}(0),...,x_{\text{opt}}(N-1)$

$u_{\text{opt}}(0),...,u_{\text{opt}}(N-1) \rightarrow \text{MPC feedback law} F_N(x(n)) := u_{\text{opt}}(0)$

feedback controlled system ("closed loop") $x(n+1) = f(x(n),F_N(x(n))) = f(x_{\text{opt}}(0),u_{\text{opt}}(0)) = x_{\text{opt}}(1)$
Model predictive control

Basic moving horizon MPC concept:

At each time instant \(n \) solve for the current state \(x = x(n) \)

\[
\text{minimize } J_N(x, u) = \sum_{n=0}^{N-1} \ell(x_u(n), u(n)), \quad x_u(0) = x
\]
Model predictive control

Basic moving horizon MPC concept:

At each time instant n solve for the current state $x = x(n)$

$$\text{minimize } J_N(x, u) = \sum_{n=0}^{N-1} \ell(x_u(n), u(n)), \quad x_u(0) = x$$

\leadsto optimal trajectory $x^{opt}(0), \ldots, x^{opt}(N - 1)$
Model predictive control

Basic moving horizon MPC concept:

At each time instant n solve for the current state $x = x(n)$

$$\minimize J_N(x, u) = \sum_{n=0}^{N-1} \ell(x_u(n), u(n)), \quad x_u(0) = x$$

\implies optimal trajectory $x^{\text{opt}}(0), \ldots, x^{\text{opt}}(N-1)$

with optimal control $u^{\text{opt}}(0), \ldots, u^{\text{opt}}(N-1)$
Model predictive control

Basic moving horizon MPC concept:

At each time instant n solve for the current state $x = x(n)$

$$\begin{align*}
\text{minimize} \quad & J_N(x, u) = \sum_{n=0}^{N-1} \ell(x_u(n), u(n)), \quad x_u(0) = x \\
\implies & \text{optimal trajectory} \quad x^{opt}(0), \ldots, x^{opt}(N - 1) \\
\implies & \text{with optimal control} \quad u^{opt}(0), \ldots, u^{opt}(N - 1) \\
\implies & \text{MPC feedback law} \quad F_N(x(n)) := u^{opt}(0)
\end{align*}$$
Model predictive control

Basic moving horizon MPC concept:

At each time instant n solve for the current state $x = x(n)$

$$\text{minimize } J_N(x, u) = \sum_{n=0}^{N-1} \ell(x_u(n), u(n)), \quad x_u(0) = x$$

\leadsto optimal trajectory $x^{opt}(0), \ldots, x^{opt}(N - 1)$

with optimal control $u^{opt}(0), \ldots, u^{opt}(N - 1)$

\leadsto MPC feedback law $F_N(x(n)) := u^{opt}(0)$

\leadsto feedback controlled system ("closed loop")

$$x(n + 1) = f(x(n), F_N(x(n))) = f(x^{opt}(0), u^{opt}(0)) = x^{opt}(1)$$
MPC from the trajectory point of view

\[x(n+1) = f(x(n), F_x(n)) \]

Lars Grüne, Stability and robustness of nonlinear predictive control without stabilizing terminal constraints, p. 5
MPC from the trajectory point of view

black = predictions (open loop optimization)
MPC from the trajectory point of view

\[x(n + 1) = f(x(n), F_N(x(n))) \]

black = predictions (open loop optimization)
red = MPC closed loop
MPC from the trajectory point of view

black = predictions (open loop optimization)
red = MPC closed loop \[x(n + 1) = f(x(n), F_N(x(n))) \]

Lars Grüne, Stability and robustness of nonlinear predictive control without stabilizing terminal constraints, p. 5
MPC from the trajectory point of view

\[x(n + 1) = f(x(n), F_N(x(n))) \]

black = predictions (open loop optimization)

red = MPC closed loop
MPC from the trajectory point of view

black = predictions (open loop optimization)
red = MPC closed loop

\[x(n + 1) = f(x(n), F_N(x(n))) \]

Lars Grüne, Stability and robustness of nonlinear predictive control without stabilizing terminal constraints, p. 5
MPC from the trajectory point of view

black = predictions (open loop optimization)
red = MPC closed loop \[x(n + 1) = f(x(n), F_N(x(n))) \]
MPC from the trajectory point of view

black = predictions (open loop optimization)
red = MPC closed loop \(x(n + 1) = f(x(n), F_N(x(n))) \)

Lars Grüne, Stability and robustness of nonlinear predictive control without stabilizing terminal constraints, p. 5
MPC from the trajectory point of view

black = predictions (open loop optimization)
red = MPC closed loop

\[x(n + 1) = f(x(n), F_N(x(n))) \]
MPC from the trajectory point of view

black = predictions (open loop optimization)
red = MPC closed loop \(x(n + 1) = f(x(n), F_N(x(n))) \)

Lars Grüne, Stability and robustness of nonlinear predictive control without stabilizing terminal constraints, p. 5
MPC from the trajectory point of view

black = predictions (open loop optimization)
red = MPC closed loop
$x(n + 1) = f(x(n), F_N(x(n)))$

Lars Grüne, Stability and robustness of nonlinear predictive control without stabilizing terminal constraints, p. 5
MPC from the trajectory point of view

black = predictions (open loop optimization)
red = MPC closed loop \[x(n + 1) = f(x(n), F_N(x(n))) \]

Lars Grüne, Stability and robustness of nonlinear predictive control without stabilizing terminal constraints, p. 5
MPC from the trajectory point of view

\[x(n + 1) = f(x(n), F_N(x(n))) \]

black = predictions (open loop optimization)

red = MPC closed loop
MPC: Questions

Questions:
- When does MPC stabilize the system?
MPC: Questions

Questions:

- When does MPC stabilize the system?
- How good is the MPC Feedback law compared to the infinite horizon optimal solution?

Stability can be ensured by including additional “stabilizing” terminal constraints to the finite horizon problem. Here we consider problems without such stabilizing constraints.

Without such constraints, stability is known to hold for “sufficiently large optimization horizon \(N \)”. [Alamir/Bornard ’95, Jadbabaie/Hauser ’05, Grimm et al. ’05]

How large is “sufficiently large”?
MPC: Questions

Questions:

- When does MPC stabilize the system?
- **How good** is the MPC Feedback law compared to the infinite horizon optimal solution?
- **How robust** is the MPC Feedback law with respect to perturbations?
MPC: Questions

Questions:

- When does MPC stabilize the system?
- How good is the MPC Feedback law compared to the infinite horizon optimal solution?
- How robust is the MPC Feedback law with respect to perturbations?
- How can we reduce the computational effort?
MPC: Questions

Questions:

- When does MPC stabilize the system?
- How good is the MPC Feedback law compared to the infinite horizon optimal solution?
- How robust is the MPC Feedback law with respect to perturbations?
- How can we reduce the computational effort?

Stability can be ensured by including additional “stabilizing” terminal constraints to the finite horizon problem. Here we consider problems without such stabilizing constraints.
MPC: Questions

Questions:

- When does MPC stabilize the system?
- How good is the MPC Feedback law compared to the infinite horizon optimal solution?
- How robust is the MPC Feedback law with respect to perturbations?
- How can we reduce the computational effort?

Stability can be ensured by including additional “stabilizing” terminal constraints to the finite horizon problem. Here we consider problems without such stabilizing constraints.

Without such constraints, stability is known to hold for “sufficiently large optimization horizon N”

[Alamir/Bornard ’95, Jadambaie/Hauser ’05, Grimm et al. ’05]
MPC: Questions

Questions:

- When does MPC stabilize the system?
- How good is the MPC Feedback law compared to the infinite horizon optimal solution?
- How robust is the MPC Feedback law with respect to perturbations?
- How can we reduce the computational effort?

Stability can be ensured by including additional “stabilizing” terminal constraints to the finite horizon problem. Here we consider problems without such stabilizing constraints.

Without such constraints, stability is known to hold for “sufficiently large optimization horizon N” [Alamir/Bornard ’95, Jadbabaie/Hauser ’05, Grimm et al. ’05]

How large is “sufficiently large”?
Estimating N

For obtaining a quantitative estimate we need quantitative information.
Estimating N

For obtaining a quantitative estimate we need **quantitative information**.

A suitable condition is “**exponential controllability through ℓ**”:

there exist real numbers $C > 0$, $\sigma \in (0, 1)$ such that for each $x(0) \in X$ there is $u(\cdot)$ with

$$\ell(x(n), u(n)) \leq C \sigma^n \ell^*(x(0))$$

with $\ell^*(x) = \min_u \ell(x, u)$
Stability conditions

\(C, \sigma \)-exponential controllability: \(\ell(x(n), u(n)) \leq C\sigma^n \ell^*(x(0)) \)
Stability conditions

C, σ-exponential controllability: $\ell(x(n), u(n)) \leq C\sigma^n \ell^*(x(0))$

Define $\alpha := 1 - \frac{(\gamma_N - 1) \prod_{i=2}^{N} (\gamma_i - 1)}{\prod_{i=2}^{N} \gamma_i - \prod_{i=2}^{N} (\gamma_i - 1)}$ with $\gamma_i = \sum_{k=0}^{i-1} C\sigma^k$
Stability conditions

\(C, \sigma\text{-exponential controllability: } \ell(x(n), u(n)) \leq C\sigma^n \ell^*(x(0)) \)

Define \(\alpha := 1 - \frac{(\gamma_N - 1) \prod_{i=2}^{N} (\gamma_i - 1)}{\prod_{i=2}^{N} \gamma_i - \prod_{i=2}^{N} (\gamma_i - 1)} \) with \(\gamma_i = \sum_{k=0}^{i-1} C\sigma^k \)

Theorem: If \(\alpha > 0 \), then the MPC feedback \(F_N \) stabilizes all \(C, \sigma\text{-exponentially controllable} \) systems and we get

\(J_{\infty}(x, F_N) \leq \inf_{u \in U_{\infty}} J_{\infty}(x, u) / \alpha \)
Stability conditions

c, σ-exponential controllability: $\ell(x(n), u(n)) \leq C\sigma^n \ell^*(x(0))$

Define $\alpha := 1 - \frac{(\gamma_N - 1) \prod_{i=2}^{N} (\gamma_i - 1)}{\prod_{i=2}^{N} \gamma_i - \prod_{i=2}^{N} (\gamma_i - 1)}$ with $\gamma_i = \sum_{k=0}^{i-1} C\sigma^k$

Theorem: If $\alpha > 0$, then the MPC feedback F_N stabilizes all c, σ-exponentially controllable systems and we get

$J_\infty(x, F_N) \leq \inf_{u \in U_\infty} J_\infty(x, u) / \alpha$

If $\alpha < 0$ then there exists a c, σ-exponentially controllable system, which is not stabilized by F_N
Stability conditions

C, σ-exponential controllability: $\ell(x(n), u(n)) \leq C\sigma^n \ell^*(x(0))$

Define $\alpha := 1 - \frac{(\gamma_N - 1) \prod_{i=2}^N (\gamma_i - 1)}{\prod_{i=2}^N \gamma_i - \prod_{i=2}^N (\gamma_i - 1)}$ with $\gamma_i = \sum_{k=0}^{i-1} C\sigma^k$

Theorem: If $\alpha > 0$, then the MPC feedback F_N stabilizes all C, σ-exponentially controllable systems and we get

$J_\infty(x, F_N) \leq \inf_{u \in U_\infty} J_\infty(x, u) / \alpha$

If $\alpha < 0$ then there exists a C, σ-exponentially controllable system, which is not stabilized by F_N

Moreover, $\alpha \to 1$ as $N \to \infty$
Stability chart for C and σ

(Figure: Harald Voit)
Stability chart for C and σ

Conclusion: try to reduce C, e.g., by choosing ℓ appropriately

(Figure: Harald Voit)
A PDE example

We illustrate this with the 1d controlled PDE

\[y_t = y_x + \nu y_{xx} + \mu y(y + 1)(1 - y) + u \]

with

domain \(\Omega = [0, 1] \)
solution \(y = y(t, x) \)
boundary conditions \(y(t, 0) = y(t, 1) = 0 \)
parameters \(\nu = 0.1 \) and \(\mu = 10 \)
and distributed control \(u : \mathbb{R} \times \Omega \to \mathbb{R} \)
A PDE example

We illustrate this with the 1d controlled PDE

\[y_t = y_x + \nu y_{xx} + \mu y(y + 1)(1 - y) + u \]

with

- **domain** \(\Omega = [0, 1] \)
- **solution** \(y = y(t, x) \)
- **boundary conditions** \(y(t, 0) = y(t, 1) = 0 \)
- **parameters** \(\nu = 0.1 \) and \(\mu = 10 \)
- and **distributed control** \(u : \mathbb{R} \times \Omega \to \mathbb{R} \)

Discrete time system: \(y(n) = y(nT, \cdot) \) for some \(T > 0 \)

("sampled data system with sampling time \(T \)")
The uncontrolled PDE

uncontrolled \((u \equiv 0) \)
The uncontrolled PDE

uncontrolled \((u \equiv 0)\)
The uncontrolled PDE

uncontrolled \((u \equiv 0) \)

Lars Grüne, Stability and robustness of nonlinear predictive control without stabilizing terminal constraints, p. 11
The uncontrolled PDE

uncontrolled \((u \equiv 0) \)
The uncontrolled PDE
The uncontrolled PDE

$\text{t}=0.125$
The uncontrolled PDE

uncontrolled \((u \equiv 0)\)

Lars Grüne, Stability and robustness of nonlinear predictive control without stabilizing terminal constraints, p. 11
The uncontrolled PDE

uncontrolled \((u \equiv 0) \)

Lars Grüne, Stability and robustness of nonlinear predictive control without stabilizing terminal constraints, p. 11
The uncontrolled PDE

uncontrolled ($u \equiv 0$)
The uncontrolled PDE

uncontrolled \((u \equiv 0) \)
The uncontrolled PDE

uncontrolled \((u \equiv 0) \)

Lars Grüne, Stability and robustness of nonlinear predictive control without stabilizing terminal constraints, p. 11
The uncontrolled PDE

uncontrolled \((u \equiv 0) \)

Lars Grüne, Stability and robustness of nonlinear predictive control without stabilizing terminal constraints, p. 11
The uncontrolled PDE

uncontrolled \((u \equiv 0)\)
The uncontrolled PDE

Lars Grüne, Stability and robustness of nonlinear predictive control without stabilizing terminal constraints, p. 11
The uncontrolled PDE

uncontrolled \((u \equiv 0)\)

Lars Grüne, Stability and robustness of nonlinear predictive control without stabilizing terminal constraints, p. 11
The uncontrolled PDE

Lars Grüne, Stability and robustness of nonlinear predictive control without stabilizing terminal constraints, p. 11
The uncontrolled PDE

\[u \equiv 0 \]
The uncontrolled PDE

uncontrolled \((u \equiv 0)\)
The uncontrolled PDE

uncontrolled \((u \equiv 0) \)
The uncontrolled PDE

uncontrolled ($u \equiv 0$)
The uncontrolled PDE

\[\begin{align*}
\text{uncontrolled (} u \equiv 0 \text{)}
\end{align*} \]
The uncontrolled PDE

\[u \equiv 0 \]

\(t = 0.55 \)

Lars Grüne, Stability and robustness of nonlinear predictive control without stabilizing terminal constraints, p. 11
The uncontrolled PDE

uncontrolled \((u \equiv 0) \)

Lars Grüne, Stability and robustness of nonlinear predictive control without stabilizing terminal constraints, p. 11
The uncontrolled PDE

uncontrolled \(u \equiv 0 \)
The uncontrolled PDE
The uncontrolled PDE

uncontrolled \((u \equiv 0) \)
The uncontrolled PDE

Lars Grüne, Stability and robustness of nonlinear predictive control without stabilizing terminal constraints, p. 11
The uncontrolled PDE

uncontrolled \((u \equiv 0)\)

Lars Grüne, Stability and robustness of nonlinear predictive control without stabilizing terminal constraints, p. 11
The uncontrolled PDE

uncontrolled \((u \equiv 0)\)

\(t=0.725\)
The uncontrolled PDE

uncontrolled \((u \equiv 0) \)
The uncontrolled PDE

uncontrolled \((u \equiv 0) \)
The uncontrolled PDE

Uncontrolled ($u \equiv 0$)

Lars Grüne, Stability and robustness of nonlinear predictive control without stabilizing terminal constraints, p. 11
The uncontrolled PDE

uncontrolled ($u \equiv 0$)
The uncontrolled PDE

uncontrolled \((u \equiv 0)\)
The uncontrolled PDE

uncontrolled \((u \equiv 0) \)

Lars Grüne, Stability and robustness of nonlinear predictive control without stabilizing terminal constraints, p. 11
The uncontrolled PDE

Lars Grüne, Stability and robustness of nonlinear predictive control without stabilizing terminal constraints, p. 11
The uncontrolled PDE

uncontrolled \((u \equiv 0) \)
The uncontrolled PDE

\[u \equiv 0 \]
The uncontrolled PDE

uncontrolled \((u \equiv 0)\)

Lars Grüne, Stability and robustness of nonlinear predictive control without stabilizing terminal constraints, p. 11
The uncontrolled PDE

uncontrolled \((u \equiv 0)\)
The uncontrolled PDE

all equilibrium solutions
MPC for the PDE example

\[y_t = y_x + \nu y_{xx} + \mu y(y + 1)(1 - y) + u \]
MPC for the PDE example

\[y_t = y_x + \nu y_{xx} + \mu y(y + 1)(1 - y) + u \]

Goal: stabilize the sampled data system \(y(n) \) at \(y \equiv 0 \)
MPC for the PDE example

\[y_t = y_x + \nu y_{xx} + \mu y(y + 1)(1 - y) + u \]

Goal: stabilize the sampled data system \(y(n) \) at \(y \equiv 0 \)

For \(y \approx 0 \) the control \(u \) must compensate for \(y_x \leadsto u \approx -y_x \)
MPC for the PDE example

\[y_t = y_x + \nu y_{xx} + \mu y(y + 1)(1 - y) + u \]

Goal: stabilize the sampled data system \(y(n) \) at \(y \equiv 0 \)

For \(y \approx 0 \) the control \(u \) must compensate for \(y_x \approx u \approx -y_x \)

This observation and a little computation reveals:

For the (usual) quadratic \(L^2 \) cost

\[\ell(y(n), u(n)) = \|y(n)\|_{L^2}^2 + \lambda \|u(n)\|_{L^2}^2 \]

the constant \(C \) is much larger than for the quadratic \(H^1 \) cost

\[\ell(y(n), u(n)) = \underbrace{\|y(n)\|_{L^2}^2 + \|y_x(n)\|_{L^2}^2}_{} + \lambda \|u(n)\|_{L^2}^2. \]

= \|y(n)\|_{H^1}^2
MPC for the PDE example

\[y_t = y_x + \nu y_{xx} + \mu y(y + 1)(1 - y) + u \]

Goal: stabilize the sampled data system \(y(n) \) at \(y \equiv 0 \)

For \(y \approx 0 \) the control \(u \) must **compensate** for \(y_x \Leftrightarrow u \approx -y_x \)

This observation and a little computation **reveals**:

For the (usual) quadratic \(L^2 \) cost

\[
\ell(y(n), u(n)) = \|y(n)\|_{L^2}^2 + \lambda \|u(n)\|_{L^2}^2
\]

the constant \(C \) is **much larger** than for the quadratic \(H^1 \) cost

\[
\ell(y(n), u(n)) = \underbrace{\|y(n)\|_{L^2}^2 + \|y_x(n)\|_{L^2}^2 + \lambda \|u(n)\|_{L^2}^2}_{=\|y(n)\|_{H^1}^2}.
\]

\(H^1 \) should **perform better** than \(L^2 \)
MPC with L_2 vs. H_1 cost

MPC with L_2 and H_1 cost, $\lambda = 0.1$, sampling time $T = 0.025$
MPC with L_2 vs. H_1 cost

MPC with L_2 and H_1 cost, $\lambda = 0.1$, sampling time $T = 0.025$
MPC with L_2 vs. H_1 cost

MPC with L_2 and H_1 cost, $\lambda = 0.1$, sampling time $T = 0.025$
MPC with L_2 vs. H_1 cost

MPC with L_2 and H_1 cost, $\lambda = 0.1$, sampling time $T = 0.025$.

Lars Grüne, Stability and robustness of nonlinear predictive control without stabilizing terminal constraints, p. 13
MPC with L_2 vs. H_1 cost

MPC with L_2 and H_1 cost, $\lambda = 0.1$, sampling time $T = 0.025$
MPC with L_2 vs. H_1 cost

MPC with L_2 and H_1 cost, $\lambda = 0.1$, sampling time $T = 0.025$
MPC with L_2 vs. H_1 cost

MPC with L_2 and H_1 cost, $\lambda = 0.1$, sampling time $T = 0.025$
MPC with L_2 vs. H_1 cost

MPC with L_2 and H_1 cost, $\lambda = 0.1$, sampling time $T = 0.025$
MPC with L_2 vs. H_1 cost

MPC with L_2 and H_1 cost, $\lambda = 0.1$, sampling time $T = 0.025$
MPC with L_2 vs. H_1 cost

MPC with L_2 and H_1 cost, $\lambda = 0.1$, sampling time $T = 0.025$
MPC with L_2 vs. H_1 cost

MPC with L_2 and H_1 cost, $\lambda = 0.1$, sampling time $T = 0.025$
MPC with L_2 vs. H_1 cost

MPC with L_2 and H_1 cost, $\lambda = 0.1$, sampling time $T = 0.025$
MPC with L_2 vs. H_1 cost

MPC with L_2 and H_1 cost, $\lambda = 0.1$, sampling time $T = 0.025$
Boundary Control

Now we change our PDE from distributed to (Dirichlet-) boundary control, i.e.

\[y_t = y_x + \nu y_{xx} + \mu y(y + 1)(1 - y) \]

with

- domain \(\Omega = [0, 1] \)
- solution \(y = y(t, x) \)
- boundary conditions \(y(t, 0) = u_0(t), y(t, 1) = u_1(t) \)
- parameters \(\nu = 0.1 \) and \(\mu = 10 \)
Boundary Control

Now we change our PDE from distributed to (Dirichlet-) boundary control, i.e.

$$y_t = y_x + \nu y_{xx} + \mu y(y + 1)(1 - y)$$

with

domain $\Omega = [0, 1]$

solution $y = y(t, x)$

boundary conditions $y(t, 0) = u_0(t), \ y(t, 1) = u_1(t)$

parameters $\nu = 0.1$ and $\mu = 10$

with boundary control, stability can only be achieved via large gradients in the transient phase
Boundary Control

Now we change our PDE from distributed to (Dirichlet-) boundary control, i.e.

\[y_t = y_x + \nu y_{xx} + \mu y(y + 1)(1 - y) \]

with

domain \(\Omega = [0, 1] \)

solution \(y = y(t, x) \)

boundary conditions \(y(t, 0) = u_0(t), y(t, 1) = u_1(t) \)

parameters \(\nu = 0.1 \) and \(\mu = 10 \)

with boundary control, stability can only be achieved via large gradients in the transient phase

\(\sim L^2 \) should perform better than \(H^1 \)
Boundary control, L_2 vs. H_1, $N = 20$

Boundary control, $\lambda = 0.001$, sampling time $T = 0.025$
Boundary control, L_2 vs. H_1, $N = 20$

L_2 vs. H_1

Boundary control, $\lambda = 0.001$, sampling time $T = 0.025$

Lars Grüne, Stability and robustness of nonlinear predictive control without stabilizing terminal constraints, p. 15
Boundary control, L_2 vs. H_1, $N = 20$

Boundary control, $\lambda = 0.001$, sampling time $T = 0.025$

Lars Grüne, Stability and robustness of nonlinear predictive control without stabilizing terminal constraints, p. 15
Boundary control, L_2 vs. H_1, $N = 20$

Boundary control, $\lambda = 0.001$, sampling time $T = 0.025$
Boundary control, L_2 vs. H_1, $N = 20$

Boundary control, $\lambda = 0.001$, sampling time $T = 0.025$
Boundary control, L_2 vs. H_1, $N = 20$

Boundary control, $\lambda = 0.001$, sampling time $T = 0.025$
Boundary control, L_2 vs. H_1, $N = 20$

Boundary control, $\lambda = 0.001$, sampling time $T = 0.025$
Boundary control, L_2 vs. H_1, $N = 20$

Boundary control, $\lambda = 0.001$, sampling time $T = 0.025$
Boundary control, L_2 vs. H_1, $N = 20$

Boundary control, $\lambda = 0.001$, sampling time $T = 0.025$

Lars Grüne, Stability and robustness of nonlinear predictive control without stabilizing terminal constraints, p. 15
Boundary control, L_2 vs. H_1, $N = 20$

Boundary control, $\lambda = 0.001$, sampling time $T = 0.025$
Boundary control, L_2 vs. H_1, $N = 20$

Boundary control, $\lambda = 0.001$, sampling time $T = 0.025$
Boundary control, L_2 vs. H_1, $N = 20$

Boundary control, $\lambda = 0.001$, sampling time $T = 0.025$

Lars Grüne, Stability and robustness of nonlinear predictive control without stabilizing terminal constraints, p. 15
Boundary control, L_2 vs. H_1, $N = 20$

Boundary control, $\lambda = 0.001$, sampling time $T = 0.025$
Boundary control, L_2 vs. H_1, $N = 20$

Boundary control, $\lambda = 0.001$, sampling time $T = 0.025$
Boundary control, L_2 vs. H_1, $N = 20$

Boundary control, $\lambda = 0.001$, sampling time $T = 0.025$
Boundary control, L_2 vs. H_1, $N = 20$

Boundary control, $\lambda = 0.001$, sampling time $T = 0.025$
Boundary control, L_2 vs. H_1, $N = 20$

Boundary control, $\lambda = 0.001$, sampling time $T = 0.025$

Lars Grüne, Stability and robustness of nonlinear predictive control without stabilizing terminal constraints, p. 15
Boundary control, L_2 vs. H_1, $N = 20$

Boundary control, $\lambda = 0.001$, sampling time $T = 0.025$
Boundary control, L_2 vs. H_1, $N = 20$

Boundary control, $\lambda = 0.001$, sampling time $T = 0.025$

Lars Grüne, Stability and robustness of nonlinear predictive control without stabilizing terminal constraints, p. 15
Boundary control, L_2 vs. H_1, $N = 20$

Boundary control, $\lambda = 0.001$, sampling time $T = 0.025$
Boundary control, L_2 vs. H_1, $N = 20$

Boundary control, $\lambda = 0.001$, sampling time $T = 0.025$
Boundary control, L_2 vs. H_1, $N = 20$

Boundary control, $\lambda = 0.001$, sampling time $T = 0.025$
Boundary control, L_2 vs. H_1, $N = 20$

Boundary control, $\lambda = 0.001$, sampling time $T = 0.025$
Boundary control, L_2 vs. H_1, $N = 20$

Boundary control, $\lambda = 0.001$, sampling time $T = 0.025$

Lars Grüne, Stability and robustness of nonlinear predictive control without stabilizing terminal constraints, p. 15
Boundary control, L_2 vs. H_1, $N = 20$

Boundary control, $\lambda = 0.001$, sampling time $T = 0.025$
Boundary control, L_2 vs. H_1, $N = 20$

Boundary control, $\lambda = 0.001$, sampling time $T = 0.025$
Boundary control, L_2 vs. H_1, $N = 20$

Boundary control, $\lambda = 0.001$, sampling time $T = 0.025$
Boundary control, L_2 vs. H_1, $N = 20$

Boundary control, $\lambda = 0.001$, sampling time $T = 0.025$
Boundary control, L_2 vs. H_1, $N = 20$
Boundary control, L_2 vs. H_1, $N = 20$

Boundary control, $\lambda = 0.001$, sampling time $T = 0.025$
Boundary control, L_2 vs. H_1, $N = 20$

Boundary control, $\lambda = 0.001$, sampling time $T = 0.025$

Lars Grüne, Stability and robustness of nonlinear predictive control without stabilizing terminal constraints, p. 15
Boundary control, L_2 vs. H_1, $N = 20$

Boundary control, $\lambda = 0.001$, sampling time $T = 0.025$
Boundary control, L_2 vs. H_1, $N = 20$

Boundary control, $\lambda = 0.001$, sampling time $T = 0.025$
Boundary control, L_2 vs. H_1, $N = 20$

Boundary control, $\lambda = 0.001$, sampling time $T = 0.025$
Boundary control, L_2 vs. H_1, $N = 20$

Boundary control, $\lambda = 0.001$, sampling time $T = 0.025$
Robustness

Usually, the model used for optimization

\[x(n + 1) = f(x(n), u(n)) \]

does not exactly match the real system
Robustness

Usually, the model used for optimization

\[x(n + 1) = f(x(n), u(n)) \]

does not exactly match the real system

This mismatch can, e.g., be modelled by an additive perturbation

\[x_{\text{real}}(n + 1) = f(x_{\text{real}}(n), u(n)) + d(n) \]
Robustness

Usually, the model used for optimization

\[x(n + 1) = f(x(n), u(n)) \]

does not exactly match the real system

This mismatch can, e.g., be modelled by an additive perturbation

\[x_{\text{real}}(n + 1) = f(x_{\text{real}}(n), u(n)) + d(n) \]

Robustness :⇔ the system still approaches/stays within a neighborhood of the stable equilibrium for small \(d(n)\)
Perturbations in MPC scheme

\[x \]

\[x_0 \]

\[0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \]

\[n \]

black = predictions (open loop optimization)
red = perturbed MPC closed loop

Lars Grüne, Stability and robustness of nonlinear predictive control without stabilizing terminal constraints, p. 17
Perturbations in MPC scheme

\[x_0 \]

black = predictions (open loop optimization)

Lars Grüne, Stability and robustness of nonlinear predictive control without stabilizing terminal constraints, p. 17
Perturbations in MPC scheme

black = predictions (open loop optimization)
red = perturbed MPC closed loop

Lars Grüne, Stability and robustness of nonlinear predictive control without stabilizing terminal constraints, p. 17
black = predictions (open loop optimization)
red = perturbed MPC closed loop
Perturbations in MPC scheme

black = predictions (open loop optimization)
red = perturbed MPC closed loop

Lars Grüne, Stability and robustness of nonlinear predictive control without stabilizing terminal constraints, p. 17
Perturbations in MPC scheme

black = predictions (open loop optimization)
red = perturbed MPC closed loop

Lars Grüne, Stability and robustness of nonlinear predictive control without stabilizing terminal constraints, p. 17
Perturbations in MPC scheme

black = predictions (open loop optimization)
red = perturbed MPC closed loop

Lars Grüne, Stability and robustness of nonlinear predictive control without stabilizing terminal constraints, p. 17
Perturbations in MPC scheme

black = predictions (open loop optimization)
red = perturbed MPC closed loop

Lars Grüne, Stability and robustness of nonlinear predictive control without stabilizing terminal constraints, p. 17
Perturbations in MPC scheme

black = predictions (open loop optimization)
red = perturbed MPC closed loop

Lars Grüne, Stability and robustness of nonlinear predictive control without stabilizing terminal constraints, p. 17
Perturbations in MPC scheme

black = predictions (open loop optimization)
red = perturbed MPC closed loop

Lars Grüne, Stability and robustness of nonlinear predictive control without stabilizing terminal constraints, p. 17
Perturbations in MPC scheme

black = predictions (open loop optimization)
red = perturbed MPC closed loop
Perturbations in MPC scheme

black = predictions (open loop optimization)
red = perturbed MPC closed loop

Lars Grüne, Stability and robustness of nonlinear predictive control without stabilizing terminal constraints, p. 17
Perturbations in MPC scheme

black = predictions (open loop optimization)
red = perturbed MPC closed loop

Lars Grüne, Stability and robustness of nonlinear predictive control without stabilizing terminal constraints, p. 17
Robustness

Robustness can be ensured, e.g., by

- (uniform) continuity of the optimal value function
 \[V_N(x) = \inf_u J_N(x, u), \]
 which serves as a Lyapunov function

[De Nicolao/Magni/Scattolini '96; Nešić/Teel/Kokotović '99; Gr./Pannek '11]
Robustness

Robustness can be ensured, e.g., by

- (uniform) continuity of the optimal value function
 \(V_N(x) = \inf_u J_N(x, u) \), which serves as a Lyapunov function
 [De Nicolao/Magni/Scattolini '96; Nešić/Teel/Kokotović '99; Gr./Pannek '11]

 (may not hold in presence of state constraints)
Robustness

Robustness can be ensured, e.g., by

- **(uniform) continuity** of the optimal value function
 \[V_N(x) = \inf_u J_N(x, u), \] which serves as a Lyapunov function

 [De Nicolao/Magni/Scattolini '96; Nešić/Teel/Kokotović '99; Gr./Pannek '11]

 (may not hold in presence of state constraints)

- a specific construction of **tightening state constraints**

 [Michalska/Mayne '93; Limón/Alamo/Camacho '02; Grimm et al. '07; Gr./Pannek '11]
Robustness

Robustness can be ensured, e.g., by

- (uniform) continuity of the optimal value function
 \[V_N(x) = \inf_u J_N(x, u), \]
 which serves as a Lyapunov function
 [De Nicolao/Magni/Scattolini '96; Nešić/Teel/Kokotović '99; Gr./Pannek '11]
 (may not hold in presence of state constraints)

- a specific construction of tightening state constraints
 [Michalska/Mayne '93; Limón/Alamo/Camacho '02; Grimm et al. '07; Gr./Pannek '11]

In the latter case, stability and robustness analysis must be carried out in an integrated way
Reducing the computational load

Back to the **unperturbed case**:

The computationally most **expensive** part of an MPC controller is the optimization
Reducing the computational load

Back to the **unperturbed case**:

The computationally most **expensive** part of an MPC controller is the optimization.

Many approaches exist for increasing the **efficiency of the optimization algorithm**, see, e.g. [Diehl et al. ’01ff.]
Reducing the computational load

Back to the unperturbed case:

The computationally most expensive part of an MPC controller is the optimization

Many approaches exist for increasing the efficiency of the optimization algorithm, see, e.g. [Diehl et al. ’01ff.]

A more systems theoretic approach: perform re-optimization less often
Schematic illustration of the idea
Schematic illustration of the idea

black = predictions (open loop optimization)
Schematic illustration of the idea

black = predictions (open loop optimization)
red = MPC closed loop
Schematic illustration of the idea

black = predictions (open loop optimization)
red = MPC closed loop

Lars Grüne, Stability and robustness of nonlinear predictive control without stabilizing terminal constraints, p. 20
Schematic illustration of the idea

black = predictions (open loop optimization)
red = MPC closed loop

Lars Grüne, Stability and robustness of nonlinear predictive control without stabilizing terminal constraints, p. 20
Schematic illustration of the idea

black = predictions (open loop optimization)
red = MPC closed loop

Lars Grüne, Stability and robustness of nonlinear predictive control without stabilizing terminal constraints, p. 20
black = predictions (open loop optimization)
red = MPC closed loop

Lars Grüne, Stability and robustness of nonlinear predictive control without stabilizing terminal constraints, p. 20
Schematic illustration of the idea

black = predictions (open loop optimization)
red = MPC closed loop

Lars Grüne, Stability and robustness of nonlinear predictive control without stabilizing terminal constraints, p. 20
Schematic illustration of the idea

black = predictions (open loop optimization)
red = MPC closed loop

Lars Grüne, Stability and robustness of nonlinear predictive control without stabilizing terminal constraints, p. 20
Schematic illustration of the idea

black = predictions (open loop optimization)
red = MPC closed loop

Lars Grüne, Stability and robustness of nonlinear predictive control without stabilizing terminal constraints, p. 20
Stability analysis

Denote the by m_j the number of elements used from the j-th control sequence, called the “control horizon”
Stability analysis

Denote the by m_j the number of elements used from the j-th control sequence, called the “control horizon”

Then the stability and performance analysis extends to time-varying control horizons if we use $\alpha = \min_{m_j} \alpha(m_j)$ where

$$\alpha(m) = 1 - \frac{\prod_{i=m+1}^{N} (\gamma_i - 1) \prod_{i=N-m+1}^{N} (\gamma_i - 1)}{\left(\prod_{i=m+1}^{N} \gamma_i - \prod_{i=m+1}^{N} (\gamma_i - 1)\right) \left(\prod_{i=N-m+1}^{N} \gamma_i - \prod_{i=N-m+1}^{N} (\gamma_i - 1)\right)}$$

with $\gamma_i = \sum_{k=0}^{i-1} C \sigma^k$
Property of $\alpha(m)$

Theorem: The values $\alpha(m)$ satisfy

$$\alpha(m) = \alpha(N-m), \ m = 1, \ldots, N-1$$

and

$$\alpha(m) \leq \alpha(m+1), \ m = 1, \ldots, \lceil N/2 \rceil$$
Property of $\alpha(m)$

Theorem: The values $\alpha(m)$ satisfy

$$\alpha(m) = \alpha(N-m), \ m = 1, \ldots, N-1$$

and

$$\alpha(m) \leq \alpha(m+1), \ m = 1, \ldots \lceil N/2 \rceil$$

Corollary: If N is such that all C, σ-exponentially controllable systems are stabilized with “classical” MPC ($m = 1$), then they are stabilized for arbitrary varying control horizons $m_i \in \{1, \ldots, N - 1\}$
Property of $\alpha(m)$

Theorem: The values $\alpha(m)$ satisfy

$$\alpha(m) = \alpha(N-m), \; m = 1, \ldots, N-1$$

and

$$\alpha(m) \leq \alpha(m+1), \; m = 1, \ldots \lceil N/2 \rceil$$

Corollary: If N is such that all C, σ-exponentially controllable systems are stabilized with “classical” MPC ($m = 1$), then they are stabilized for arbitrary varying control horizons $m_i \in \{1, \ldots, N - 1\}$

How does $\alpha(m)$ look like for a single system?
Example: linearized inverted pendulum

\[
\dot{x} = \begin{pmatrix}
0 & 1 & 0 & 0 \\
g & -k & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
\end{pmatrix} \begin{pmatrix}
x \\
g \\
-k \\
0 \\
\end{pmatrix} x + \begin{pmatrix}
0 \\
1 \\
0 \\
1 \\
\end{pmatrix} u, \quad x_0 = \begin{pmatrix}
0 \\
0 \\
0 \\
-2 \\
\end{pmatrix}
\]

sampling time \(T = 0.5 \), \(\ell(x,u) = 2\|x\|_1 + 4\|u\|_1 \), \(N = 11 \)

\(x_3 \) component of trajectory (cart position) for different \(m \)

Lars Grüne, Stability and robustness of nonlinear predictive control without stabilizing terminal constraints, p. 23
Example: linearized inverted pendulum

\[\dot{x} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ g & -k & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix} x + \begin{pmatrix} 0 \\ 1 \\ 0 \\ 1 \end{pmatrix} u, \quad x_0 = \begin{pmatrix} 0 \\ 0 \\ -2 \\ 0 \end{pmatrix} \]

sampling time \(T = 0.5, \ \ell(x,u) = 2\|x\|_1 + 4\|u\|_1, \ N = 11 \)

\(x_3 \) component of trajectory (cart position) for different \(m \)

Lars Grüne, Stability and robustness of nonlinear predictive control without stabilizing terminal constraints, p. 23
Example: linearized inverted pendulum

\[
\dot{x} = \begin{pmatrix}
0 & 1 & 0 & 0 \\
g & -k & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{pmatrix} x + \begin{pmatrix}
0 \\
1 \\
0 \\
1
\end{pmatrix} u, \quad x_0 = \begin{pmatrix}
0 \\
0 \\
-2 \\
0
\end{pmatrix}
\]

sampling time \(T = 0.5 \), \(\ell(x, u) = 2\|x\|_1 + 4\|u\|_1 \), \(N = 11 \)

\(x_3 \) component of trajectory (cart position) for different \(m \)
Example: linearized inverted pendulum

\[
\dot{x} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ g & -k & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix} x + \begin{pmatrix} 0 \\ 1 \\ 0 \\ 1 \end{pmatrix} u, \quad x_0 = \begin{pmatrix} 0 \\ 0 \\ -2 \\ 0 \end{pmatrix}
\]

sampling time \(T = 0.5 \), \(\ell(x, u) = 2\|x\|_1 + 4\|u\|_1 \), \(N = 11 \)

\(x_3 \) component of trajectory (cart position) for different \(m \)
Example: linearized inverted pendulum

\[\dot{x} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ g & -k & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix} x + \begin{pmatrix} 0 \\ 1 \\ 0 \\ 1 \end{pmatrix} u, \quad x_0 = \begin{pmatrix} 0 \\ 0 \\ -2 \\ 0 \end{pmatrix} \]

sampling time \(T = 0.5, \ell(x, u) = 2\|x\|_1 + 4\|u\|_1, N = 11 \)

\(x_3 \) component of trajectory (cart position) for different \(m \)
Example: linearized inverted pendulum

\[
\dot{x} = \begin{pmatrix}
0 & 1 & 0 & 0 \\
g & -k & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{pmatrix} x + \begin{pmatrix}
0 \\
1 \\
0 \\
1
\end{pmatrix} u,
\]

\[
x_0 = \begin{pmatrix}
0 \\
0 \\
-2 \\
0
\end{pmatrix}
\]

sampling time \(T = 0.5 \), \(\ell(x, u) = 2\|x\|_1 + 4\|u\|_1 \), \(N = 11 \)

Lars Grüne, Stability and robustness of nonlinear predictive control without stabilizing terminal constraints, p. 23
Discussion of the approach

Conclusion:

- longer control horizons can be used without affecting the nominal (=unperturbed) stability and performance
Discussion of the approach

Conclusion:

- longer control horizons can be used \textit{without affecting} the nominal (\textendash un-perturbed) \textit{stability} and \textit{performance}
- but: longer control horizons \textit{may reduce} \textit{robustness}
Problem of the approach: less robustness

Lars Grüne, Stability and robustness of nonlinear predictive control without stabilizing terminal constraints, p. 25
Problem of the approach: less robustness

black = predictions (open loop optimization)
Problem of the approach: less robustness

black = predictions (open loop optimization)
red = perturbed MPC closed loop

Lars Grüne, Stability and robustness of nonlinear predictive control without stabilizing terminal constraints, p. 25
Problem of the approach: less robustness

black = predictions (open loop optimization)
red = perturbed MPC closed loop

Lars Grüne, Stability and robustness of nonlinear predictive control without stabilizing terminal constraints, p. 25
Problem of the approach: less robustness

black = predictions (open loop optimization)
red = perturbed MPC closed loop

Lars Grüne, Stability and robustness of nonlinear predictive control without stabilizing terminal constraints, p. 25
Problem of the approach: less robustness

black = predictions (open loop optimization)
red = perturbed MPC closed loop
Problem of the approach: less robustness

black = predictions (open loop optimization)
red = perturbed MPC closed loop

Lars Grüne, Stability and robustness of nonlinear predictive control without stabilizing terminal constraints, p. 25
Problem of the approach: less robustness

black = predictions (open loop optimization)
red = perturbed MPC closed loop

Lars Grüne, Stability and robustness of nonlinear predictive control without stabilizing terminal constraints, p. 25
Problem of the approach: less robustness

black = predictions (open loop optimization)
red = perturbed MPC closed loop
Problem of the approach: less robustness

black = predictions (open loop optimization)
red = perturbed MPC closed loop

Lars Grüne, Stability and robustness of nonlinear predictive control without stabilizing terminal constraints, p. 25
Discussion of the approach

Conclusion:

- longer control horizons can be used \textit{without affecting} the nominal (\textit{=} unperturbed) \textit{stability and performance}

- but: longer control horizons \textit{may reduce robustness}
Discussion of the approach

Conclusion:

- longer control horizons can be used \textit{without affecting} the nominal (=unperturbed) \textit{stability and performance}
- but: longer control horizons \textit{may reduce robustness}

Remedy:

- use \textit{sensitivity based techniques} to update the “tails” of the optimal control sequences
- perform an \textit{integrated robustness and stability analysis}

This will be the starting point for SADCO Task 3.3
Summary and outlook

- we developed a stability and guaranteed performance analysis method for MPC schemes

Lars Grüne, Stability and robustness of nonlinear predictive control without stabilizing terminal constraints, p. 27
Summary and outlook

- we developed a stability and guaranteed performance analysis method for MPC schemes
- with this method we can compute optimization horizon bounds N under controllability assumptions

The approach can be coupled with robust MPC variants. The method can be extended to analyzing varying control horizons $m \in \{1, \ldots, M\}$.

Main conclusion: larger and varying control horizons can be used without losing (nominal) stability and performance. However, longer control horizons may reduce robustness.

Tasks in SADCO project:
- improve robustness using sensitivity techniques
- integrated stability and robustness analysis

Lars Grüne, Stability and robustness of nonlinear predictive control without stabilizing terminal constraints, p. 27
Summary and outlook

- we developed a stability and guaranteed performance analysis method for MPC schemes
- with this method we can compute optimization horizon bounds N under controllability assumptions
- the approach can be coupled with robust MPC variants

Main conclusion: larger and varying control horizons can be used without losing (nominal) stability and performance. However, longer control horizons may reduce robustness.
Summary and outlook

- we developed a stability and guaranteed performance analysis method for MPC schemes
- with this method we can compute optimization horizon bounds N under controllability assumptions
- the approach can be coupled with robust MPC variants
- the method can be extended to analyzing varying control horizons $m_i \in \{1, \ldots, M\}$
Summary and outlook

- we developed a **stability and guaranteed performance analysis** method for MPC schemes
- with this method we can compute optimization horizon bounds N under **controllability assumptions**
- the approach can be **coupled with robust** MPC variants
- the method can be extended to analyzing **varying** control horizons $m_i \in \{1, \ldots, M\}$
- **main conclusion**: larger and varying control horizons can be used **without losing (nominal) stability and performance**
Summary and outlook

- we developed a stability and guaranteed performance analysis method for MPC schemes
- with this method we can compute optimization horizon bounds N under controllability assumptions
- the approach can be coupled with robust MPC variants
- the method can be extended to analyzing varying control horizons $m_i \in \{1, \ldots, M\}$
- main conclusion: larger and varying control horizons can be used without losing (nominal) stability and performance
- However, longer control horizons may reduce robustness
Summary and outlook

- we developed a stability and guaranteed performance analysis method for MPC schemes
- with this method we can compute optimization horizon bounds N under controllability assumptions
- the approach can be coupled with robust MPC variants
- the method can be extended to analyzing varying control horizons $m_i \in \{1, \ldots, M\}$
- main conclusion: larger and varying control horizons can be used without losing (nominal) stability and performance
- However, longer control horizons may reduce robustness
- tasks in SADCO project:
Summary and outlook

- We developed a stability and guaranteed performance analysis method for MPC schemes.
- With this method, we can compute optimization horizon bounds N under controllability assumptions.
- The approach can be coupled with robust MPC variants.
- The method can be extended to analyzing varying control horizons $m_i \in \{1, \ldots, M\}$.
- Main conclusion: larger and varying control horizons can be used without losing (nominal) stability and performance.
- However, longer control horizons may reduce robustness.
- Tasks in SADCO project:
 - Improve robustness using sensitivity techniques.
Summary and outlook

- we developed a **stability and guaranteed performance analysis** method for MPC schemes
- with this method we can compute optimization horizon bounds N under **controllability assumptions**
- the approach can be **coupled with robust MPC variants**
- the method can be extended to analyzing **varying control horizons** $m_i \in \{1, \ldots, M\}$

- **main conclusion**: larger and varying control horizons can be used **without losing (nominal) stability and performance**
- However, longer control horizons **may reduce robustness**
- tasks in SADCO project:
 - improve robustness using **sensitivity techniques**
 - integrated stability and robustness analysis