Optimal control, Hamilton-Jacobi equations and singularities in euclidean and riemannian spaces

Piermarco CANNARSA & Carlo SINESTRARI

Università di Roma “Tor Vergata”

SADCO SUMMER SCHOOL & WORKSHOP 2012
NEW TRENDS IN OPTIMAL CONTROL

Ravello, Italy September 3 – 7, 2012
Outline

1. Introduction to semiconcave functions, generalized differentials, and singularities
 - Semiconcave functions
 - Semiconcavity of value functions
 - Generalized differentials
 - Optimal synthesis
 - Singular sets, rectifiability
Outline

1. Introduction to semiconcave functions, generalized differentials, and singularities
 - Semiconcave functions
 - Semiconcavity of value functions
 - Generalized differentials
 - Optimal synthesis
 - Singular sets, rectifiability
Historical remarks

Oleinik 1957 One-sided Lipschitz estimate as a uniqueness criterion for scalar hyperbolic conservation laws

Kruzhkov 1960, Dougliis 1961 Semiconcavity as a uniqueness criterion for Hamilton-Jacobi equations

Hrustalev 1978 Semiconcavity of the value function in optimal control
Historical remarks

Oleinik 1957 One-sided Lipschitz estimate as a uniqueness criterion for scalar hyperbolic conservation laws

Kruzhkov 1960, Douglis 1961 Semiconcavity as a uniqueness criterion for Hamilton-Jacobi equations

Hrustalev 1978 Semiconcavity of the value function in optimal control
Historical remarks

Oleinik 1957 One-sided Lipschitz estimate as a uniqueness criterion for scalar hyperbolic conservation laws

Kruzhkov 1960, Dougli 1961 Semiconcavity as a uniqueness criterion for Hamilton-Jacobi equations

Hrustalev 1978 Semiconcavity of the value function in optimal control
Historical remarks

Oleinik 1957 One-sided Lipschitz estimate as a uniqueness criterion for scalar hyperbolic conservation laws

Kruzhkov 1960, Douglis 1961 Semiconcavity as a uniqueness criterion for Hamilton-Jacobi equations

Hrustalev 1978 Semiconcavity of the value function in optimal control
Historical remarks (II)

Cannarsa-Soner 1987 Semiconcavity of the value function in optimal control, singularities of semiconcave functions

Reference: Cannarsa–S.:“Semiconcave functions, Hamilton-Jacobi equations and optimal control” (Birkhäuser, 2004)

Semiconcave functions have been widely applied in other fields, e.g. nonlinear second order PDEs (Krylov), geometry of Alexandrov spaces (Perelman, Petrunin), etc.
Historical remarks (II)

Cannarsa-Soner 1987 Semiconcavity of the value function in optimal control, singularities of semiconcave functions

Reference: Cannarsa–S.:“Semiconcave functions, Hamilton-Jacobi equations and optimal control” (Birkhäuser, 2004)

Semiconcave functions have been widely applied in other fields, e.g. nonlinear second order PDEs (Krylov), geometry of Alexandrov spaces (Perelman, Petrunin), etc.
Historical remarks (II)

Cannarsa-Soner 1987 Semiconcavity of the value function in optimal control, singularities of semiconcave functions

Reference: Cannarsa–S.:“Semiconcave functions, Hamilton-Jacobi equations and optimal control” (Birkhäuser, 2004)

Semiconcave functions have been widely applied in other fields, e.g. nonlinear second order PDEs (Krylov), geometry of Alexandrov spaces (Perelman, Petrunin), etc.
Semiconcave functions

Definition

A function \(u \in C(A) \), with \(A \subset \mathbb{R}^n \) is called semiconcave in \(A \) (with a linear modulus) if there exists \(C \geq 0 \) such that

\[
 u(x + h) + u(x - h) - 2u(x) \leq C|h|^2,
\]

for all \(x, h \in \mathbb{R}^n \) such that \([x - h, x + h] \subset A\).

C is called a semiconcavity constant for \(u \) in \(A \).

\(u \) semiconvex if \(-u \) is semiconcave.
Semiconcave functions

Definition

A function $u \in C(A)$, with $A \subset \mathbb{R}^n$ is called **semiconcave in A** (with a linear modulus) if there exists $C \geq 0$ such that

$$u(x + h) + u(x - h) - 2u(x) \leq C|h|^2,$$

for all $x, h \in \mathbb{R}^n$ such that $[x - h, x + h] \subset A$.

C is called a semiconcavity constant for u in A.

u semiconvex if $-u$ is semiconcave.
Semiconcave functions

Definition

A function $u \in C(A)$, with $A \subset \mathbb{R}^n$ is called semiconcave in A (with a linear modulus) if there exists $C \geq 0$ such that

$$u(x + h) + u(x - h) - 2u(x) \leq C|h|^2,$$

for all $x, h \in \mathbb{R}^n$ such that $[x - h, x + h] \subset A$.

C is called a semiconcavity constant for u in A.

u semiconvex if $-u$ is semiconcave.
Semiconcave functions

Definition

A function \(u \in C(A) \), with \(A \subset \mathbb{R}^n \) is called semiconcave in \(A \) (with a linear modulus) if there exists \(C \geq 0 \) such that

\[
 u(x + h) + u(x - h) - 2u(x) \leq C|h|^2,
\]

for all \(x, h \in \mathbb{R}^n \) such that \([x - h, x + h] \subset A\).

\(C \) is called a semiconcavity constant for \(u \) in \(A \).

\(u \) semiconvex if \(-u\) is semiconcave.
Equivalent formulations

Proposition

The following properties are equivalent:

- u is semiconcave with constant C;
- the function $x \rightarrow u(x) - \frac{C}{2}|x|^2$ is concave in A;
- $u = u_1 + u_2$, with u_1 concave and $u_2 \in C^2(A)$ such that $\|D^2 u_2\|_{\infty} \leq C$;
- for any $\nu \in \mathbb{R}^n$ such that $|\nu| = 1$ we have $\frac{\partial^2 u}{\partial \nu^2} \leq C$ in A weakly;
- $u(x) = \inf_{i \in I} u_i(x)$, where $\{u_i\}_{i \in I} \subset C^2(A)$ such that $\|D^2 u_i\|_{\infty} \leq C$ for all $i \in I$.

(semiconcavity \iff minimization).
Equivalent formulations

Proposition

The following properties are equivalent:

- u is semiconcave with constant C;
- The function $x \mapsto u(x) - \frac{C}{2}|x|^2$ is concave in A;
- $u = u_1 + u_2$, with u_1 concave and $u_2 \in C^2(A)$ such that $\|D^2u_2\|_\infty \leq C$;
- For any $\nu \in \mathbb{R}^n$ such that $|\nu| = 1$ we have $\frac{\partial^2 u}{\partial \nu^2} \leq C$ in A weakly;
- $u(x) = \inf_{i \in I} u_i(x)$, where $\{u_i\}_{i \in I} \subset C^2(A)$ such that $\|D^2u_i\|_\infty \leq C$ for all $i \in I$.

(semiconcavity \iff minimization).
Equivalent formulations

Proposition

The following properties are equivalent:

- u is semiconcave with constant C;
- the function $x \rightarrow u(x) - \frac{C}{2}|x|^2$ is concave in A;
- $u = u_1 + u_2$, with u_1 concave and $u_2 \in C^2(A)$ such that $\|D^2 u_2\|_\infty \leq C$;
- for any $\nu \in \mathbb{R}^n$ such that $|\nu| = 1$ we have $\frac{\partial^2 u}{\partial \nu^2} \leq C$ in A weakly;
- $u(x) = \inf_{i \in \mathcal{I}} u_i(x)$, where $\{u_i\}_{i \in \mathcal{I}} \subset C^2(A)$ such that $\|D^2 u_i\|_\infty \leq C$ for all $i \in \mathcal{I}$.

(semicconcavity \iff minimization).
Equivalent formulations

Proposition

The following properties are equivalent:

- \(u \) is semiconcave with constant \(C \);
- the function \(x \mapsto u(x) - \frac{C}{2}|x|^2 \) is concave in \(A \);
- \(u = u_1 + u_2 \), with \(u_1 \) concave and \(u_2 \in C^2(A) \) such that \(\|D^2 u_2\|_\infty \leq C \);
- for any \(\nu \in \mathbb{R}^n \) such that \(|\nu| = 1 \) we have \(\frac{\partial^2 u}{\partial \nu^2} \leq C \) in \(A \) weakly;
- \(u(x) = \inf_{i \in I} u_i(x) \), where \(\{u_i\}_{i \in I} \subset C^2(A) \) such that \(\|D^2 u_i\|_\infty \leq C \) for all \(i \in I \).

(semiconcavity \(\iff \) minimization).
Equivalent formulations

Proposition

The following properties are equivalent:

- u is semiconcave with constant C;
- the function $x \mapsto u(x) - \frac{C}{2}|x|^2$ is concave in A;
- $u = u_1 + u_2$, with u_1 concave and $u_2 \in C^2(A)$ such that $\|D^2 u_2\|_\infty \leq C$;
- for any $\nu \in \mathbb{R}^n$ such that $|\nu| = 1$ we have $\frac{\partial^2 u}{\partial \nu^2} \leq C$ in A weakly;
- $u(x) = \inf_{i \in I} u_i(x)$, where $\{u_i\}_{i \in I} \subset C^2(A)$ such that $\|D^2 u_i\|_\infty \leq C$ for all $i \in I$.

(semiconcavity \leftrightarrow minimization).
Equivalent formulations

Proposition

The following properties are equivalent:

- u is semiconcave with constant C;
- the function $x \to u(x) - \frac{C}{2}|x|^2$ is concave in A;
- $u = u_1 + u_2$, with u_1 concave and $u_2 \in C^2(A)$ such that $\|D^2 u_2\|_\infty \leq C$;
- for any $\nu \in \mathbb{R}^n$ such that $|\nu| = 1$ we have $\frac{\partial^2 u}{\partial \nu^2} \leq C$ in A weakly;
- $u(x) = \inf_{i \in I} u_i(x)$, where $\{u_i\}_{i \in I} \subset C^2(A)$ such that $\|D^2 u_i\|_\infty \leq C$ for all $i \in I$.

(semiconcavity \iff minimization).

P. Cannarsa & C. Sinestrari (Rome 2)
Optimal control, HJ eqns, singularities
September 3 – 7, 2012
Generalizations

Definition

A function $u : A \to \mathbb{R}$ is called semiconcave with modulus $\omega(\cdot)$, where $\omega : \mathbb{R}_+ \to \mathbb{R}_+$ is nondecreasing and satisfies $\lim_{\rho \to 0^+} \omega(\rho) = 0$, if

$$
\lambda u(x) + (1 - \lambda) u(y) - u(\lambda x + (1 - \lambda)y) \leq \lambda(1 - \lambda)|x - y|\omega(|x - y|)
$$

for any pair $x, y \in A$, such that $[x, y] \subset S$ is contained in S and for any $\lambda \in [0, 1]$.

Standard definition: linear modulus $\omega(h) = Ch$.

P. Cannarsa & C. Sinestrari (Rome 2)
Optimal control, HJ eqns, singularities
September 3 – 7, 2012
8 / 52
Generalizations

Definition

A function $u : A \rightarrow \mathbb{R}$ is called semiconcave with modulus $\omega(\cdot)$, where $\omega : \mathbb{R}_+ \rightarrow \mathbb{R}_+$ is nondecreasing and satisfies $\lim_{\rho \rightarrow 0^+} \omega(\rho) = 0$, if

$$\lambda u(x) + (1 - \lambda)u(y) - u(\lambda x + (1 - \lambda)y) \leq \lambda(1 - \lambda)|x - y|\omega(|x - y|)$$

for any pair $x, y \in A$, such that $[x, y] \subset S$ is contained in S and for any $\lambda \in [0, 1]$.

Standard definition: linear modulus $\omega(h) = Ch$.
Generalizations (II)

- \(u \) semiconcave with modulus \(\omega \) iff \(u = \inf u_i \), with \(u_i \in C^1 \) and \(Du_i \) has a uniform modulus of continuity \(\omega(\cdot) \), for every \(i \).

- \(u \) semiconcave with modulus \(\omega \) does NOT imply that \(u = u_1 + u_2 \) with \(u_1 \) concave, \(u_2 \in C^1 \).
Generalizations (II)

- u semiconcave with modulus ω iff $u = \inf u_i$, with $u_i \in C^1$ and Du_i has a uniform modulus of continuity $\omega(\cdot)$, for every i.
- u semiconcave with modulus ω does NOT imply that $u = u_1 + u_2$ with u_1 concave, $u_2 \in C^1$.

Outline

1. Introduction to semiconcave functions, generalized differentials, and singularities
 - Semiconcave functions
 - Semiconcavity of value functions
 - Generalized differentials
 - Optimal synthesis
 - Singular sets, rectifiability
The distance function

Given any $S \subset \mathbb{R}^n$ closed, define

$$d_S(x) = \min_{y \in S} |y - x|, \quad x \in \mathbb{R}^n,$$

distance function from the set S.

It is a special case of the *minimum time function*, corresponding to

$$y' = a(t) \in A = B_1 \text{ (unit ball)}.$$
The distance function

Given any $S \subset \mathbb{R}^n$ closed, define

$$d_S(x) = \min_{y \in S} |y - x|, \quad x \in \mathbb{R}^n,$$

distance function from the set S.

It is a special case of the *minimum time function*, corresponding to

$$y' = a(t) \in A = B_1 \text{ (unit ball)}.$$
Proposition

- The squared distance function d_S^2 is semiconcave in \mathbb{R}^n with semiconcavity constant 2.

- d_S is locally semiconcave in $\mathbb{R}^n \setminus S$. More precisely, given Ω such that $\text{dist}(S, \Omega) > 0$, d_S is semiconcave in Ω with semiconcavity constant equal to $\text{dist}(S, \Omega)^{-1}$.
Semiconcavity of the distance function

Proposition

1. The squared distance function d_S^2 is semiconcave in \mathbb{R}^n with semiconcavity constant 2.

2. d_S is locally semiconcave in $\mathbb{R}^n \setminus S$. More precisely, given Ω such that $\text{dist}(S, \Omega) > 0$, d_S is semiconcave in Ω with semiconcavity constant equal to $\text{dist}(S, \Omega)^{-1}$.
Semiconcavity of the distance function (II)

Proof of the semiconcavity of d_S^2

For any $x \in \mathbb{R}^n$ we have

$$d_S^2(x) - |x|^2 = \min_{y \in S} |x - y|^2 - |x|^2 = \min_{y \in S} \left(|y|^2 - 2\langle x, y \rangle \right).$$

$\implies d_S^2(x) - |x|^2$ is concave (infimum of linear functions)

$\implies d_S^2(\cdot)$ semiconcave with constant 2. \hfill \square
Semiconcavity of the distance function (II)

Proof of the semiconcavity of d^2_S

For any $x \in \mathbb{R}^n$ we have

$$d^2_S(x) - |x|^2 = \min_{y \in S} |x - y|^2 - |x|^2 = \min_{y \in S} \left(|y|^2 - 2\langle x, y \rangle \right).$$

\implies $d^2_S(x) - |x|^2$ is concave (infimum of linear functions)

\implies $d^2_S(\cdot)$ semiconcave with constant 2. □
Semiconcavity of the distance function (II)

Proof of the semiconcavity of d^2_S

For any $x \in \mathbb{R}^n$ we have

$$d^2_S(x) - |x|^2 = \min_{y \in S} |x - y|^2 - |x|^2 = \min_{y \in S} \left(|y|^2 - 2 \langle x, y \rangle \right).$$

$\implies d^2_S(x) - |x|^2$ is concave (infimum of linear functions)

$\implies d^2_S(\cdot)$ semiconcave with constant 2. \square
Semiconcavity of the distance function (II)

Proof of the semiconcavity of d^2_S

For any $x \in \mathbb{R}^n$ we have

$$d^2_S(x) - |x|^2 = \min_{y \in S} |x - y|^2 - |x|^2 = \min_{y \in S} \left(|y|^2 - 2\langle x, y \rangle\right).$$

\implies $d^2_S(x) - |x|^2$ is concave (infimum of linear functions)

\implies $d^2_S(\cdot)$ semiconcave with constant 2. \square
Semiconcavity of the distance function (III)

Proof of the local semiconcavity of \(d_S \)

Take \(z, h \in \mathbb{R}^n, z \neq 0 \). By a direct computation

\[
|z + h| + |z - h| - 2|z| \leq \frac{|h|^2}{|z|}.
\]

Let now \(\Omega \) be a set with positive distance from \(S \). For any \(x, h \) such that \([x - h, x + h] \subset \Omega\), let \(\bar{x} \in S \) be a projection of \(x \) onto \(S \). Then

\[
d_S(x + h) + d_S(x - h) - 2d_S(x) \\
\leq |x + h - \bar{x}| + |x - h - \bar{x}| - 2|x - \bar{x}| \\
\leq \frac{|h|^2}{|x - \bar{x}|} \leq \frac{|h|^2}{\text{dist}(S, \Omega)}. \quad \square
\]
Semiconcavity of the distance function (III)

Proof of the local semiconcavity of d_S

Take $z, h \in \mathbb{R}^n$, $z \neq 0$. By a direct computation

$$|z + h| + |z - h| - 2|z| \leq \frac{|h|^2}{|z|}.$$

Let now Ω be a set with positive distance from S. For any x, h such that $[x - h, x + h] \subset \Omega$, let $\bar{x} \in S$ be a projection of x onto S. Then

$$d_S(x + h) + d_S(x - h) - 2d_S(x) \leq |x + h - \bar{x}| + |x - h - \bar{x}| - 2|x - \bar{x}| \leq \frac{|h|^2}{|x - \bar{x}|} \leq \frac{|h|^2}{\text{dist} (S, \Omega)}.$$

\square
Semiconcavity of the distance function (III)

Proof of the local semiconcavity of d_S

Take $z, h \in \mathbb{R}^n, z \neq 0$. By a direct computation

$$|z + h| + |z - h| - 2|z| \leq \frac{|h|^2}{|z|}.$$

Let now Ω be a set with positive distance from S. For any x, h such that $[x - h, x + h] \subset \Omega$, let $\bar{x} \in S$ be a projection of x onto S. Then

$$d_S(x + h) + d_S(x - h) - 2d_S(x) \leq |x + h - \bar{x}| + |x - h - \bar{x}| - 2|x - \bar{x}|$$

$$\leq \frac{|h|^2}{|x - \bar{x}|} \leq \frac{|h|^2}{\text{dist}(S, \Omega)}.$$

\square
Semiconcavity of the distance function (III)

Proof of the local semiconcavity of d_S

Take $z, h \in \mathbb{R}^n$, $z \neq 0$. By a direct computation

$$|z + h| + |z - h| - 2|z| \leq \frac{|h|^2}{|z|}.$$

Let now Ω be a set with positive distance from S. For any x, h such that $[x - h, x + h] \subset \Omega$, let $\bar{x} \in S$ be a projection of x onto S. Then

$$d_S(x + h) + d_S(x - h) - 2d_S(x) \leq |x + h - \bar{x}| + |x - h - \bar{x}| - 2|x - \bar{x}|$$

$$\leq \frac{|h|^2}{|x - \bar{x}|} \leq \frac{|h|^2}{\text{dist}(S, \Omega)}. \quad \square$$
Interior sphere property

We say that \(S \subset \mathbb{R}^n \) satisfies the \textit{interior sphere property} for some \(r > 0 \) if, for any \(x \in S \) there exists \(y \) such that \(x \in B_r(y) \subset S \).

Proposition

If \(S \) satisfies the interior sphere property for some \(r > 0 \), then \(d_S \) is semiconcave in \(\mathbb{R}^n \setminus S \) with constant equal to \(r^{-1} \).
Interior sphere property

We say that $S \subset \mathbb{R}^n$ satisfies the *interior sphere property* for some $r > 0$ if, for any $x \in S$ there exists y such that $x \in \overline{B_r(y)} \subset S$.

Proposition

*If S satisfies the interior sphere property for some $r > 0$, then d_S is semiconcave in $\mathbb{R}^n \setminus S$ with constant equal to r^{-1}.***
The Mayer problem with fixed horizon

- \((f, A)\) control process in \(\mathbb{R}^n\), \(T > 0\)
- given \((t, x)\) and a control \(\alpha : [t, T] \rightarrow A\)

 \[y(\cdot; t, x, \alpha) \text{ solution of } \begin{cases} y(s) = f(y(s), \alpha(s)) & s \in [t, T] \\ y(t) = x \end{cases} \]

- \(\psi : \mathbb{R}^n \rightarrow \mathbb{R}\) final cost

Problem (Mayer with fixed horizon)

\[
\text{minimize } \psi(y(T; t, x, \alpha)) \text{ over all } \alpha \in L^1(t, T; A)
\]
The Mayer problem with fixed horizon

- \((f, A)\) control process in \(\mathbb{R}^n\), \(T > 0\)
- given \((t, x)\) and a control \(\alpha : [t, T] \rightarrow A\)

\[y(\cdot; t, x, \alpha) \quad \text{solution of} \quad \begin{cases} \dot{y}(s) = f(y(s), \alpha(s)) & s \in [t, T] \\ y(t) = x \end{cases} \]

- \(\psi : \mathbb{R}^n \rightarrow \mathbb{R}\) final cost

Problem (Mayer with fixed horizon)

\[\text{minimize} \quad \psi(y(T; t, x, \alpha)) \quad \text{over all} \quad \alpha \in L^1(t, T; A) \]
The Mayer problem with fixed horizon

- (f, A) control process in \mathbb{R}^n, $T > 0$
- given (t, x) and a control $\alpha : [t, T] \rightarrow A$

$$y(\cdot; t, x, \alpha) \text{ solution of } \begin{cases} \dot{y}(s) = f(y(s), \alpha(s)) & s \in [t, T] \\ y(t) = x \end{cases}$$

- $\psi : \mathbb{R}^n \rightarrow \mathbb{R}$ final cost

Problem (Mayer with fixed horizon)

minimize $\psi(y(T; t, x, \alpha))$ over all $\alpha \in L^1(t, T; A)$
Semiconcavity of the value function

Value function

\[V(t, x) = \min_{\alpha} \psi(y(T; t, x, \alpha)), \quad (t, x) \in [0, T] \times \mathbb{R}^n. \]

Theorem

(Cannarsa-Frankowska, 1991) Suppose that
- The control set \(A \) is compact.
- \(f(x, a) \) is differentiable w.r.t. \(x \).
- \(f(x, a) \) and \(f_x(x, a) \) are Lipschitz continuous w.r.t. \(x \), uniformly in \(a \).
- \(\psi \) is semiconcave in \(\mathbb{R}^n \).

Then the value function \(V \) is semiconcave in \([0, T] \times \mathbb{R}^n\) (jointly in \((t, x)\)).
Semiconcavity of the value function

Value function

\[V(t, x) = \min_{\alpha} \psi(y(T; t, x, \alpha)), \quad (t, x) \in [0, T] \times \mathbb{R}^n. \]

Theorem

(Cannarsa-Frankowska, 1991) Suppose that

– The control set \(A \) is compact.
– \(f(x, a) \) is differentiable w.r.t. \(x \).
– \(f(x, a) \) and \(f_x(x, a) \) are Lipschitz continuous w.r.t. \(x \), uniformly in \(a \).
– \(\psi \) is semiconcave in \(\mathbb{R}^n \).

Then the value function \(V \) is semiconcave in \([0, T] \times \mathbb{R}^n\) (jointly in \((t, x))\).
Semiconcavity of the value function

Value function

\[V(t, x) = \min_{\alpha} \psi(y(T; t, x, \alpha)), \quad (t, x) \in [0, T] \times \mathbb{R}^n. \]

Theorem

(Cannarsa-Frankowska, 1991) Suppose that

– The control set \(A \) is compact.
– \(f(x, a) \) is differentiable w.r.t. \(x \).
– \(f(x, a) \) and \(f_x(x, a) \) are Lipschitz continuous w.r.t. \(x \), uniformly in \(a \).
– \(\psi \) is semiconcave in \(\mathbb{R}^n \).

Then the value function \(V \) is semiconcave in \([0, T] \times \mathbb{R}^n \) (jointly in \((t, x) \)).
Semiconcavity of the value function

Value function

\[V(t, x) = \min_{\alpha} \psi(y(T; t, x, \alpha)), \quad (t, x) \in [0, T] \times \mathbb{R}^n. \]

Theorem

(Cannarsa-Frankowska, 1991) Suppose that

- The control set \(A \) is compact.
- \(f(x, a) \) is differentiable w.r.t. \(x \).
- \(f(x, a) \) and \(f_x(x, a) \) are Lipschitz continuous w.r.t. \(x \), uniformly in \(a \).
- \(\psi \) is semiconcave in \(\mathbb{R}^n \).

Then the value function \(V \) is semiconcave in \([0, T] \times \mathbb{R}^n \) (jointly in \((t, x))\).
Semiconcavity of the value function

Value function

\[V(t, x) = \min_{\alpha} \psi(y(T; t, x, \alpha)), \quad (t, x) \in [0, T] \times \mathbb{R}^n. \]

Theorem

(Cannarsa-Frankowska, 1991) Suppose that

– The control set A is compact.
– \(f(x, a) \) is differentiable w.r.t. \(x \).
– \(f(x, a) \) and \(f_x(x, a) \) are Lipschitz continuous w.r.t. \(x \), uniformly in \(a \).
– \(\psi \) is semiconcave in \(\mathbb{R}^n \).

Then the value function \(V \) is semiconcave in \([0, T] \times \mathbb{R}^n \) (jointly in \((t, x))\).
Semiconcavity of the value function

Value function

\[V(t, x) = \min_{\alpha} \psi(y(T; t, x, \alpha)), \quad (t, x) \in [0, T] \times \mathbb{R}^n. \]

Theorem

(Cannarsa-Frankowska, 1991) Suppose that

– The control set \(A \) is compact.
– \(f(x, a) \) is differentiable w.r.t. \(x \).
– \(f(x, a) \) and \(f_x(x, a) \) are Lipschitz continuous w.r.t. \(x \), uniformly in \(a \).
– \(\psi \) is semiconcave in \(\mathbb{R}^n \).

Then the value function \(V \) is semiconcave in \([0, T] \times \mathbb{R}^n\) (jointly in \((t, x)\)).
Semiconcavity of the value function

Value function

\[V(t, x) = \min_{\alpha} \psi(y(T; t, x, \alpha)), \quad (t, x) \in [0, T] \times \mathbb{R}^n. \]

Theorem

(Cannarsa-Frankowska, 1991) Suppose that

- The control set \(A \) is compact.
- \(f(x, a) \) is differentiable w.r.t. \(x \).
- \(f(x, a) \) and \(f_x(x, a) \) are Lipschitz continuous w.r.t. \(x \), uniformly in \(a \).
- \(\psi \) is semiconcave in \(\mathbb{R}^n \).

Then the value function \(V \) is semiconcave in \([0, T] \times \mathbb{R}^n\) (jointly in \((t, x)\)).
Proof of the semiconcavity (I)

Estimates on trajectories starting at different points but following the same control.

Lemma

There exists $c > 0$ such that

$$|y(T; t, x_0, \alpha) - y(T; t, x_1, \alpha)| \leq c|x_0 - x_1|,$$

and

$$
|y(T; t, x_0, \alpha) + y(T; t, x_1, \alpha) - 2y(T; t, \frac{x_0 + x_1}{2}, \alpha)| \leq c|x_0 - x_1|^2
$$

for all $\alpha : [t, T] \to U$ and $x_0, x_1 \in \mathbb{R}^n$.

Regularity of f, Gronwall Lemma.
Proof of the semiconcavity (I)

Estimates on trajectories starting at different points but following the same control.

Lemma

There exists \(c > 0 \) such that

\[
|y(T; t, x_0, \alpha) - y(T; t, x_1, \alpha)| \leq c|x_0 - x_1|,
\]

\[
|y(T; t, x_0, \alpha) + y(T; t, x_1, \alpha) - 2y\left(T; t, \frac{x_0 + x_1}{2}, \alpha\right)| \leq c|x_0 - x_1|^2
\]

for all \(\alpha : [t, T] \rightarrow U \) and \(x_0, x_1 \in \mathbb{R}^n \).

Regularity of \(f \), Gronwall Lemma.
Proof of the semiconcavity (I)

Estimates on trajectories starting at different points but following the same control.

Lemma

There exists $c > 0$ such that

$$|y(T; t, x_0, \alpha) - y(T; t, x_1, \alpha)| \leq c|x_0 - x_1|,$$

$$\left|y(T; t, x_0, \alpha) + y(T; t, x_1, \alpha) - 2y\left(T; t, \frac{x_0 + x_1}{2}, \alpha\right)\right| \leq c|x_0 - x_1|^2$$

for all $\alpha : [t, T] \rightarrow U$ and $x_0, x_1 \in \mathbb{R}^n$.

Regularity of f, Gronwall Lemma.
Proof of the semiconcavity (II)

For simplicity, we only prove semiconcavity w.r.t. x.

Consider $x - h, x, x + h \in \mathbb{R}^n$ and $t \in [0, T)$. Let $\alpha : [t, T] \rightarrow A$ be an optimal control for the middle point (t, x).

Let us set for simplicity

\[y(\cdot) = y(\cdot ; t, x, \alpha), \quad y_-(\cdot) = y(\cdot ; t, x - h, \alpha), \quad y_+(\cdot) = y(\cdot ; t, x + h, \alpha). \]

By the previous lemma

\[|y_+(T) - y_-(T)| \leq c|h|, \quad |y_+(T) + y_-(T) - 2y(T)| \leq c|h|^2. \]
Proof of the semiconcavity (II)

For simplicity, we only prove semiconcavity w.r.t. x.

Consider $x - h, x, x + h \in \mathbb{R}^n$ and $t \in [0, T)$. Let $\alpha : [t, T] \rightarrow A$ be an optimal control for the middle point (t, x).

Let us set for simplicity

$$y(\cdot) = y(\cdot; t, x, \alpha), \quad y_-(\cdot) = y(\cdot; t, x - h, \alpha), \quad y_+(\cdot) = y(\cdot; t, x + h, \alpha).$$

By the previous lemma

$$|y_+(T) - y_-(T)| \leq c|h|, \quad |y_+(T) + y_-(T) - 2y(T)| \leq c|h|^2.$$
Proof of the semiconcavity (II)

For simplicity, we only prove semiconcavity w.r.t. x.

Consider $x - h, x, x + h \in \mathbb{R}^n$ and $t \in [0, T)$. Let $\alpha : [t, T] \to A$ be an optimal control for the middle point (t, x).

Let us set for simplicity

$$y(\cdot) = y(\cdot; t, x, \alpha), \quad y_-(\cdot) = y(\cdot; t, x - h, \alpha), \quad y_+(\cdot) = y(\cdot; t, x + h, \alpha).$$

By the previous lemma

$$|y_+(T) - y_-(T)| \leq c|h|, \quad |y_+(T) + y_-(T) - 2y(T)| \leq c|h|^2.$$
Proof of the semiconcavity (II)

For simplicity, we only prove semiconcavity w.r.t. x.

Consider $x - h, x, x + h \in \mathbb{R}^n$ and $t \in [0, T)$. Let $\alpha : [t, T] \to A$ be an optimal control for the middle point (t, x).

Let us set for simplicity

$$y(\cdot) = y(\cdot; t, x, \alpha), \quad y_-(\cdot) = y(\cdot; t, x - h, \alpha), \quad y_+(\cdot) = y(\cdot; t, x + h, \alpha).$$

By the previous lemma

$$|y_+(T) - y_-(T)| \leq c|h|, \quad |y_+(T) + y_-(T) - 2y(T)| \leq c|h|^2.$$
Proof of the semiconcavity (III)

It follows,

\[
V(t, x + h) + V(t, x - h) - 2V(t, x) \\
\leq \psi(y_+(T)) + \psi(y_-(T)) - 2\psi(y(T)) \\
= \psi(y_+(T)) + \psi(y_-(T)) - 2\psi\left(\frac{y_+(T) + y_-(T)}{2}\right) \\
\quad + 2\psi\left(\frac{y_+(T) + y_-(T)}{2}\right) - 2\psi(y(T)) \\
\leq C_\psi |y_+(T) - y_-(T)|^2 + L_\psi |y_+(T) + y_-(T) - 2y(T)| \\
\leq (C_\psi c^2 + L_\psi c)|h|^2,
\]

which proves the semiconcavity w.r.t. \(x \). \(\square \)
Minimum time function

- \((f, A)\) control process in \(\mathbb{R}^n\),
- \(f(x, a)\) Lipschitz w.r.t. \(x, A\) compact;
- given \(\alpha : [0, \infty) \rightarrow A\) control,

\[y(\cdot; x, \alpha) \text{ solution of } \begin{cases} \dot{y}(t) = f(y(t), \alpha(t)) & (t \geq 0) \\ y(0) = x \end{cases} \]

- target \(S \subset \mathbb{R}^n\) nonempty closed set
- transition time \(\tau(x, \alpha) = \inf \{ t \geq 0 \mid y(t; x, \alpha) \in S \}\)
- controllable set \(C = \{ x \in \mathbb{R}^n \mid \exists \alpha : \tau(x, \alpha) < \infty \}\)
- minimum time function \(T(x) = \inf_\alpha \tau(x, \alpha) \quad x \in C\)
Minimum time function

- \((f, A)\) control process in \(\mathbb{R}^n\),
- \(f(x, a)\) Lipschitz w.r.t. \(x, A\) compact;
- given \(\alpha : [0, \infty) \to A\) control,

\[
y(\cdot; x, \alpha) \quad \text{solution of} \quad \begin{cases}
\dot{y}(t) = f(y(t), \alpha(t)) & (t \geq 0) \\
y(0) = x
\end{cases}
\]

- target \(S \subset \mathbb{R}^n\) nonempty closed set
- transition time \(\tau(x, \alpha) = \inf \{ t \geq 0 \mid y(t; x, \alpha) \in S \}\)
- controllable set \(C = \{ x \in \mathbb{R}^n \mid \exists \alpha : \tau(x, \alpha) < \infty \}\)
- minimum time function \(T(x) = \inf_\alpha \tau(x, \alpha)\) \(x \in C\)
Minimum time function

- \((f, A)\) control process in \(\mathbb{R}^n\),
- \(f(x, a)\) Lipschitz w.r.t. \(x, A\) compact;
- given \(\alpha : [0, \infty) \to A\) control,

\[y(\cdot; x, \alpha) \text{ solution of } \begin{cases} \dot{y}(t) = f(y(t), \alpha(t)) & (t \geq 0) \\ y(0) = x \end{cases} \]

- target \(S \subset \mathbb{R}^n\) nonempty closed set
- transition time \(\tau(x, \alpha) = \inf \{ t \geq 0 \mid y(t; x, \alpha) \in S \}\)
- controllable set \(C = \{ x \in \mathbb{R}^n \mid \exists \alpha : \tau(x, \alpha) < \infty \}\)
- minimum time function \(T(x) = \inf_\alpha \tau(x, \alpha) \quad x \in C\)
Minimum time function

- \((f, A)\) control process in \(\mathbb{R}^n\),
- \(f(x, a)\) Lipschitz w.r.t. \(x\), \(A\) compact;
- given \(\alpha : [0, \infty) \rightarrow A\) control,

\[
y(\cdot; x, \alpha) \quad \text{solution of} \quad \begin{cases} \dot{y}(t) = f(y(t), \alpha(t)) \quad (t \geq 0) \\ y(0) = x \end{cases}
\]

- target \(S \subset \mathbb{R}^n\) nonempty closed set
- transition time \(\tau(x, \alpha) = \inf \{ t \geq 0 \mid y(t; x, \alpha) \in S \}\)
- controllable set \(C = \{ x \in \mathbb{R}^n \mid \exists \alpha : \tau(x, \alpha) < \infty \}\)
- minimum time function \(T(x) = \inf_\alpha \tau(x, \alpha) \quad x \in C\)
Minimum time function

- \((f, A)\) control process in \(\mathbb{R}^n\),
- \(f(x, a)\) Lipschitz w.r.t. \(x, A\) compact;
- given \(\alpha : [0, \infty) \to A\) control,

\[
y(\cdot; x, \alpha) \text{ solution of } \begin{cases}
\dot{y}(t) = f(y(t), \alpha(t)) & (t \geq 0) \\
y(0) = x
\end{cases}
\]

- target \(S \subset \mathbb{R}^n\) nonempty closed set
- transition time \(\tau(x, \alpha) = \inf \{ t \geq 0 | y(t; x, \alpha) \in S \}\)
- controllable set \(C = \{ x \in \mathbb{R}^n | \exists \alpha : \tau(x, \alpha) < \infty \}\)
- minimum time function \(T(x) = \inf_{\alpha} \tau(x, \alpha) \quad x \in C\)
Minimum time function

- \((f, A)\) control process in \(\mathbb{R}^n\),
- \(f(x, a)\) Lipschitz w.r.t. \(x, A\) compact;
- given \(\alpha : [0, \infty) \rightarrow A\) control,

\[
y(\cdot; x, \alpha) \quad \text{solution of} \quad \begin{cases}
\dot{y}(t) = f(y(t), \alpha(t)) & (t \geq 0) \\
y(0) = x
\end{cases}
\]

- target \(S \subset \mathbb{R}^n\) nonempty closed set
- transition time \(\tau(x, \alpha) = \inf \{ t \geq 0 \mid y(t; x, \alpha) \in S \}\)
- controllable set \(C = \{ x \in \mathbb{R}^n \mid \exists \alpha : \tau(x, \alpha) < \infty \}\)
- minimum time function \(T(x) = \inf_{\alpha} \tau(x, \alpha) \quad x \in C\)
Petrov condition

Definition

Given $y \in \partial S$, a vector $\nu \in \mathbb{R}^n$ is called a **proximal normal** to S at y if

$$\text{proj}_S(y + \varepsilon\nu) = \{y\}$$

for $\varepsilon > 0$ small enough.

Definition

We say that (f, A) *satisfies the Petrov condition on* S *if there exists* $\mu > 0$ *such that*

$$\min_{a \in A} f(x, a) \cdot \nu \leq -\mu |\nu|$$

for any $x \in \partial S$, ν **proximal normal** to S *at* x.
Local controllability

Theorem

(Petrov 1970, Bardi-Falcone 1990, . . .) Let the Petrov condition hold. Then

- C is an open neighbourhood of S;
- there exist $k, \delta > 0$ such that
 \[T(x) \leq kd_S(x), \quad \forall x \text{ s.t. } d_S(x) \leq \delta \]
- T is locally Lipschitz continuous on C.

P. Cannarsa & C. Sinestrari (Rome 2) Optimal control, HJ eqns, singularities September 3 – 7, 2012 23 / 52
Local controllability

Theorem

\textit{(Petrov 1970, Bardi-Falcone 1990, \ldots) Let the Petrov condition hold. Then}

- \mathcal{C} is an open neighbourhood of S;
- there exist $k, \delta > 0$ such that

$$T(x) \leq kd_S(x), \quad \forall x \text{ s.t. } d_S(x) \leq \delta$$

- T is locally Lipschitz continuous on \mathcal{C}.
Local controllability

Theorem

(Petrov 1970, Bardi-Falcone 1990, . . .) Let the Petrov condition hold. Then

- C is an open neighbourhood of S;
- there exist $k, \delta > 0$ such that
 \[T(x) \leq kd_S(x), \quad \forall x \text{ s.t. } d_S(x) \leq \delta \]

- T is locally Lipschitz continuous on C.
Semiconcavity of T

Theorem

Let the Petrov condition hold and let $f(x, a)$ be $C^{1,1}$ w.r.t. x.

- If S satisfies an interior sphere property, then T is locally semiconcave in $\overline{C \setminus S}$. (Cannarsa-S., 1995)
- If $f(x, A)$ is convex and satisfies an interior sphere property for x near S, then T is locally semiconcave in $C \setminus S$. (Cannarsa-Frankowska, S., 2004)
- If $f(x, a) = Ax + a$ for some matrix A and S is convex, then T is locally semiconvex in $\overline{C \setminus S}$. (Cannarsa-S., 1995)
Semiconcavity of T

Theorem

Let the Petrov condition hold and let $f(x, a)$ be $C^{1,1}$ w.r.t. x.

- If S satisfies an interior sphere property, then T is locally semiconcave in $\overline{C \setminus S}$. \textit{(Cannarsa-S., 1995)}

- If $f(x, A)$ is convex and satisfies an interior sphere property for x near S, then T is locally semiconcave in $C \setminus S$. \textit{(Cannarsa-Frankowska, S., 2004)}

- If $f(x, a) = Ax + a$ for some matrix A and S is convex, then T is locally semiconvex in $\overline{C \setminus S}$. \textit{(Cannarsa-S., 1995)}
Semiconcavity of T

Theorem

Let the Petrov condition hold and let $f(x, a)$ be $C^{1,1}$ w.r.t. x.

- If S satisfies an interior sphere property, then T is locally semiconcave in $\overline{C \setminus S}$. (*Cannarsa-S., 1995*)

- If $f(x, A)$ is convex and satisfies an interior sphere property for x near S, then T is locally semiconcave in $C \setminus S$.
 (*Cannarsa-Frankowska, S., 2004*)

- If $f(x, a) = Ax + a$ for some matrix A and S is convex, then T is locally semiconvex in $\overline{C \setminus S}$. (*Cannarsa-S., 1995*)
Semiconcavity of T

Theorem

Let the Petrov condition hold and let $f(x, a)$ be $C^{1,1}$ w.r.t. x.

- If S satisfies an interior sphere property, then T is locally semiconcave in $\overline{C \setminus S}$. (*Cannarsa-S., 1995*)

- If $f(x, A)$ is convex and satisfies an interior sphere property for x near S, then T is locally semiconcave in $C \setminus S$. (*Cannarsa-Frankowska, S., 2004*)

- If $f(x, a) = Ax + a$ for some matrix A and S is convex, then T is locally semiconvex in $\overline{C \setminus S}$. (*Cannarsa-S., 1995*)
Outline

1. Introduction to semiconcave functions, generalized differentials, and singularities
 - Semiconcave functions
 - Semiconcavity of value functions
 - Generalized differentials
 - Optimal synthesis
 - Singular sets, rectifiability
Lipschitz continuity

Proposition

If $u : A \to \mathbb{R}$ is semiconcave (with a general modulus), it is locally Lipschitz continuous in the interior of A.

Corollary

Semiconcave functions are differentiable almost everywhere (Rademacher’s theorem).

Theorem

(Alexandroff) Semiconcave functions with linear modulus is twice differentiable almost everywhere.
Proposition

If \(u : A \rightarrow \mathbb{R} \) is semiconcave (with a general modulus), it is locally Lipschitz continuous in the interior of \(A \).

Corollary

Semiconcave functions are differentiable almost everywhere (Rademacher’s theorem).

Theorem

(Alexandroff) Semiconcave functions with linear modulus is twice differentiable almost everywhere.
Proposition

If $u : A \rightarrow \mathbb{R}$ is semiconcave (with a general modulus), it is locally Lipschitz continuous in the interior of A.

Corollary

Semiconcave functions are differentiable almost everywhere (Rademacher’s theorem).

Theorem

(Alexandroff) Semiconcave functions with linear modulus is twice differentiable almost everywhere.
Fréchet differentials

Let \(u : A \to \mathbb{R} \), with \(A \subset \mathbb{R}^n \) open.

Definition

Given \(x \in A \), the sets

\[
D^- u(x) = \left\{ p \in \mathbb{R}^n : \liminf_{y \to x} \frac{u(y) - u(x) - \langle p, y - x \rangle}{|y - x|} \geq 0 \right\},
\]

\[
D^+ u(x) = \left\{ p \in \mathbb{R}^n : \limsup_{y \to x} \frac{u(y) - u(x) - \langle p, y - x \rangle}{|y - x|} \leq 0 \right\}
\]

are called, respectively, the (Fréchet) subdifferential and superdifferential of \(u \) at \(x \).
Reachable gradients

Definition

Given \(u : A \rightarrow \mathbb{R} \) and \(x \in A \), we say that \(p \) is a reachable gradient of \(u \) at \(x \) if there exists \(\{x_n\} \subset A \) such that \(u \) is differentiable at \(x_n \) and

\[
x = \lim_{n \to \infty} x_n \quad \text{and} \quad p = \lim_{n \to \infty} Du(x_n).
\]

We denote by \(D^*u(x) \) the set of reachable gradients.

If \(u \in \text{Lip}_{loc}(A) \), then \(D^*u(x) \neq \emptyset \) for any \(x \in A \).

If \(u \in \text{Lip}_{loc}(A) \), the convex hull of \(D^*u(x) \) coincides with Clarke's generalized gradient.
Reachable gradients

Definition

Given $u : A \to \mathbb{R}$ and $x \in A$, we say that p is a reachable gradient of u at x if there exists $\{x_n\} \subset A$ such that u is differentiable at x_n and

$$x = \lim_{n \to \infty} x_n \quad p = \lim_{n \to \infty} Du(x_n).$$

We denote by $D^* u(x)$ the set of reachable gradients.

If $u \in \text{Lip}_{\text{loc}}(A)$, then $D^* u(x) \neq \emptyset$ for any $x \in A$.

If $u \in \text{Lip}_{\text{loc}}(A)$, the convex hull of $D^* u(x)$ coincides with Clarke’s generalized gradient.
Reachable gradients

Definition

Given $u : A \rightarrow \mathbb{R}$ and $x \in A$, we say that p is a reachable gradient of u at x if there exists $\{x_n\} \subset A$ such that u is differentiable at x_n and

$$x = \lim_{n \to \infty} x_n \quad p = \lim_{n \to \infty} Du(x_n).$$

We denote by $D^* u(x)$ the set of reachable gradients.

If $u \in Lip_{loc}(A)$, then $D^* u(x) \neq \emptyset$ for any $x \in A$.

If $u \in Lip_{loc}(A)$, the convex hull of $D^* u(x)$ coincides with Clarke’s generalized gradient.
Reachable gradients

Definition

Given \(u : A \to \mathbb{R} \) and \(x \in A \), we say that \(p \) is a reachable gradient of \(u \) at \(x \) if there exists \(\{ x_n \} \subset A \) such that \(u \) is differentiable at \(x_n \) and

\[
 x = \lim_{n \to \infty} x_n, \quad p = \lim_{n \to \infty} Du(x_n).
\]

We denote by \(D^* u(x) \) the set of reachable gradients.

If \(u \in \text{Lip}_{\text{loc}}(A) \), then \(D^* u(x) \neq \emptyset \) for any \(x \in A \).

If \(u \in \text{Lip}_{\text{loc}}(A) \), the convex hull of \(D^* u(x) \) coincides with Clarke’s generalized gradient.
Differential properties

Proposition

Let $u : A \to \mathbb{R}$ be semiconcave (with general modulus). Then

- $D^+ u(x) = \text{co}(D^* u(x))$.
- $D^+ u(x) \neq \emptyset$.
- $D^* u(x) \subset \partial D^+ u(x)$.
- If $x_k \to x$ and if $p_k \in D^+ u(x_k)$ satisfy $p_k \to p$, then $p \in D^+ u(x)$ (upper semicontinuity of $D^+ u$).
- If $D^+ u(x)$ is a singleton, then u is differentiable at x.
Differential properties

Proposition

Let $u : A \to \mathbb{R}$ be semiconcave (with general modulus). Then

1. $D^+ u(x) = \text{co}(D^* u(x))$.
2. $D^+ u(x) \neq \emptyset$.
3. $D^* u(x) \subset \partial D^+ u(x)$.
4. If $x_k \to x$ and if $p_k \in D^+ u(x_k)$ satisfy $p_k \to p$, then $p \in D^+ u(x)$ (upper semicontinuity of $D^+ u$).
5. If $D^+ u(x)$ is a singleton, then u is differentiable at x.

P. Cannarsa & C. Sinestrari (Rome 2)

Optimal control, HJ eqns, singularities

September 3 – 7, 2012 29 / 52
Differential properties

Proposition

Let $u : A \to \mathbb{R}$ be semiconcave (with general modulus). Then

- $D^+ u(x) = \text{co}(D^* u(x))$.
- $D^+ u(x) \neq \emptyset$.
- $D^* u(x) \subset \partial D^+ u(x)$.
- If $x_k \to x$ and if $p_k \in D^+ u(x_k)$ satisfy $p_k \to p$, then $p \in D^+ u(x)$ (upper semicontinuity of $D^+ u$).
- If $D^+ u(x)$ is a singleton, then u is differentiable at x.
Differential properties

Proposition

Let $u : A \rightarrow \mathbb{R}$ be semiconcave (with general modulus). Then

1. $D^+ u(x) = \text{co}(D^* u(x))$.
2. $D^+ u(x) \neq \emptyset$.
3. $D^* u(x) \subset \partial D^+ u(x)$.

If $x_k \rightarrow x$ and if $p_k \in D^+ u(x_k)$ satisfy $p_k \rightarrow p$, then $p \in D^+ u(x)$ (upper semicontinuity of $D^+ u$).

If $D^+ u(x)$ is a singleton, then u is differentiable at x.
Differential properties

Proposition

Let $u : A \to \mathbb{R}$ be semiconcave (with general modulus). Then

- $D^+ u(x) = \text{co}(D^* u(x))$.
- $D^+ u(x) \neq \emptyset$.
- $D^* u(x) \subset \partial D^+ u(x)$.
- If $x_k \to x$ and if $p_k \in D^+ u(x_k)$ satisfy $p_k \to p$, then $p \in D^+ u(x)$ (upper semicontinuity of $D^+ u$).
- If $D^+ u(x)$ is a singleton, then u is differentiable at x.

P. Cannarsa & C. Sinestrari (Rome 2)
Optimal control, HJ eqns, singularities
September 3 – 7, 2012
29 / 52
For simplicity, linear modulus of semiconcavity, \(A \) open convex.

Proposition

Let \(u : A \to \mathbb{R} \) be semiconcave with constant \(C \). Then

\[
\text{if and only if}
\]

\[
\forall p \in D^+ u(x), \quad u(y) \leq u(x) + \langle p, y - x \rangle + \frac{C}{2} |x - y|^2
\]

for all \(y \in A; \)

\[
\text{given } x, y \text{ and } p \in D^+ u(x), q \in D^+ u(y), \text{ we have}
\]

\[
\langle q - p, y - x \rangle \leq C |x - y|^2 \quad \text{(monotonicity of } D^+ u).\]
Differential properties

For simplicity, linear modulus of semiconcavity, A open convex.

Proposition

Let $u : A \to \mathbb{R}$ be semiconcave with constant C. Then

- $p \in D^+ u(x)$ if and only if

$$u(y) \leq u(x) + \langle p, y - x \rangle + \frac{C}{2}|x - y|^2$$

for all $y \in A$;

- given x, y and $p \in D^+ u(x), q \in D^+ u(y)$, we have

$$\langle q - p, y - x \rangle \leq C|x - y|^2 \quad \text{(monotonicity of } D^+ u).$$
An approximation lemma

Proposition

Let $u : A \to \mathbb{R}$ be semiconcave, $x_0 \in A$ and V an open set such that $x_0 \in V \subset \overline{V} \subset A$. Then, for any $p \in D^+ u(x_0)$ there is a sequence $u_k \in C^\infty(V)$ such that

- $u_k \to u$ uniformly in V
- $D u_k(x_0) \to p$
- $\|u_k\|_{\infty} \leq M$, $\|D u_k\|_{\infty} \leq L$, $\|D^2 u_k\|_{\infty} \leq C$, for all k,

where M, L and C are respectively the supremum, the Lipschitz constant and the semiconcavity constant of u on A.
An approximation lemma

Proposition

Let $u : A \to \mathbb{R}$ be semiconcave, $x_0 \in A$ and V an open set such that $x_0 \in V \subset \overline{V} \subset A$. Then, for any $p \in D^+ u(x_0)$ there is a sequence $u_k \in C^\infty(V)$ such that

- $u_k \to u$ uniformly in V
- $Du_k(x_0) \to p$
- $\|u_k\|_\infty \leq M$, $\|Du_k\|_\infty \leq L$, $\|D^2 u_k\|_\infty \leq C$, for all k, where M, L and C are respectively the supremum, the Lipschitz constant and the semiconcavity constant of u on A.

P. Cannarsa & C. Sinestrari (Rome 2)
An approximation lemma

Proposition

Let \(u : A \to \mathbb{R} \) be semiconcave, \(x_0 \in A \) and \(V \) an open set such that \(x_0 \in V \subset \overline{V} \subset A \). Then, for any \(p \in D^+ u(x_0) \) there is a sequence \(u_k \in C^\infty(V) \) such that

- \(u_k \to u \) uniformly in \(V \)
- \(Du_k(x_0) \to p \)
- \(||u_k||_\infty \leq M, ||Du_k||_\infty \leq L, ||D^2u_k||_\infty \leq C \), for all \(k \),

where \(M, L \) and \(C \) are respectively the supremum, the Lipschitz constant and the semiconcavity constant of \(u \) on \(A \).
An approximation lemma

Proposition

Let \(u : A \rightarrow \mathbb{R} \) be semiconcave, \(x_0 \in A \) and \(V \) an open set such that \(x_0 \in V \subset \overline{V} \subset A \). Then, for any \(p \in D^+ u(x_0) \) there is a sequence \(u_k \in C^\infty(V) \) such that

\begin{itemize}
 \item \(u_k \rightarrow u \) uniformly in \(V \)
 \item \(D u_k(x_0) \rightarrow p \)
 \item \(\|u_k\|_\infty \leq M, \|D u_k\|_\infty \leq L, \|D^2 u_k\|_\infty \leq C \), for all \(k \),
\end{itemize}

where \(M, L \) and \(C \) are respectively the supremum, the Lipschitz constant and the semiconcavity constant of \(u \) on \(A \).
Consider the Hamilton-Jacobi equation

\[(HJ) \quad H(x, u, Du) = 0, \quad x \in \Omega \subset \mathbb{R}^n. \]

with \(H\) a continuous function.

\(u \in C(\Omega)\) is a viscosity solution of \((HJ)\) if it satisfies, for any \(x \in \Omega\),

\[H(x, u(x), p) \leq 0 \quad \forall p \in D^+ u(x),\]

\[H(x, u(x), q) \geq 0 \quad \forall q \in D^- u(x).\]
Consider the Hamilton-Jacobi equation

\[(HJ) \quad H(x, u, Du) = 0, \quad x \in \Omega \subset \mathbb{R}^n.\]

with \(H\) a continuous function.

\(u \in C(\Omega)\) is a \textit{viscosity solution} of \((HJ)\) if it satisfies, for any \(x \in \Omega\),

\[
H(x, u(x), p) \leq 0 \quad \forall p \in D^+ u(x),
\]

\[
H(x, u(x), q) \geq 0 \quad \forall q \in D^- u(x).
\]
Proposition

Suppose that $H(x, u, p)$ is convex w.r.t. p. Let $u : \Omega \to \mathbb{R}$ be a semiconcave function which satisfies (HJ) at all points of differentiability. Then u is a viscosity solution of (HJ).

Proof — At the points x where u is differentiable — trivial.

If u is not differentiable at x, then $D^- u(x) = \emptyset$, while $D^+ u(x) = \text{co}(D^* u(x))$.

By continuity, $H(x, u(x), p) = 0$ for all $p \in D^* u(x)$.

By convexity, $H(x, u(x), p) \leq 0$ for all $p \in D^+ u(x)$. □
Proposition

Suppose that \(H(x, u, p) \) is convex w.r.t. \(p \). Let \(u : \Omega \rightarrow \mathbb{R} \) be a semiconcave function which satisfies \((HJ)\) at all points of differentiability. Then \(u \) is a viscosity solution of \((HJ)\).

Proof — At the points \(x \) where \(u \) is differentiable — trivial.

If \(u \) is not differentiable at \(x \), then \(D^- u(x) = \emptyset \), while \(D^+ u(x) = \text{co}(D^* u(x)) \).

By continuity, \(H(x, u(x), p) = 0 \) for all \(p \in D^* u(x) \).

By convexity, \(H(x, u(x), p) \leq 0 \) for all \(p \in D^+ u(x) \). □
Semiconcavity and viscosity (II)

Proposition

Suppose that $H(x, u, p)$ is convex w.r.t. p. Let $u : \Omega \to \mathbb{R}$ be a semiconcave function which satisfies (HJ) at all points of differentiability. Then u is a viscosity solution of (HJ).

Proof — At the points x where u is differentiable — trivial.

If u is not differentiable at x, then $D^- u(x) = \emptyset$, while $D^+ u(x) = \text{co}(D^* u(x))$.

By continuity, $H(x, u(x), p) = 0$ for all $p \in D^* u(x)$.

By convexity, $H(x, u(x), p) \leq 0$ for all $p \in D^+ u(x)$.

□
Proposition

Suppose that $H(x, u, p)$ is convex w.r.t. p. Let $u : \Omega \to \mathbb{R}$ be a semiconcave function which satisfies \((HJ)\) at all points of differentiability. Then u is a viscosity solution of \((HJ)\).

Proof — At the points x where u is differentiable — trivial.

If u is not differentiable at x, then $D^- u(x) = \emptyset$, while $D^+ u(x) = \text{co}(D^* u(x))$.

By continuity, $H(x, u(x), p) = 0$ for all $p \in D^* u(x)$.

By convexity, $H(x, u(x), p) \leq 0$ for all $p \in D^+ u(x)$. □
Proposition

Suppose that $H(x, u, p)$ is convex w.r.t. p. Let $u : \Omega \rightarrow \mathbb{R}$ be a semiconcave function which satisfies \((HJ)\) at all points of differentiability. Then u is a viscosity solution of \((HJ)\).

Proof — At the points x where u is differentiable — trivial.

If u is not differentiable at x, then $D^- u(x) = \emptyset$, while $D^+ u(x) = \text{co}(D^* u(x))$.

By continuity, $H(x, u(x), p) = 0$ for all $p \in D^* u(x)$.

By convexity, $H(x, u(x), p) \leq 0$ for all $p \in D^+ u(x)$. □
Marginal functions

Marginal functions: infimum of smooth functions

\[u(x) = \min_{s \in S} F(s, x) \]

Then \(u \) is semiconcave.
Marginal functions

Marginal functions: infimum of smooth functions

\(A \subset \mathbb{R}^n \) open, \(S \subset \mathbb{R}^m \) compact.
\(F = F(s, x) \) continuous in \(S \times A \) together with \(D_x F \).

Define \(u(x) = \min_{s \in S} F(s, x) \). Then \(u \) is semiconcave.
Marginal functions

Marginal functions: infimum of smooth functions

(\leftrightarrow \text{ semiconcave functions.})

A \subset \mathbb{R}^n \text{ open, } S \subset \mathbb{R}^m \text{ compact.}

F = F(s, x) \text{ continuous in } S \times A \text{ together with } D_x F.

Define \(u(x) = \min_{s \in S} F(s, x) \). Then \(u \) is semiconcave.
Marginal functions

Marginal functions: infimum of smooth functions

(\textarrow{\textleftarrow{}\rightarrow{}} \text{semiconcave functions}.)

\(A \subset \mathbb{R}^n\) open, \(S \subset \mathbb{R}^m\) compact.

\(F = F(s, x)\) continuous in \(S \times A\) together with \(D_x F\).

Define \(u(x) = \min_{s \in S} F(s, x)\). Then \(u\) is semiconcave.
Marginal functions (II)

Theorem

Let \(u(x) = \min_{s \in S} F(s, x) \) as above. Given \(x \in A \), define

\[
M(x) = \{ s \in S : u(x) = F(s, x) \},
\]

\[
Y(x) = \{ D_x F(s, x) : s \in M(x) \}.
\]

Then, for any \(x \in A \)

\[
D^+ u(x) = \text{co} Y(x).
\]

In particular, \(u \) is differentiable at \(x \) if and only if \(Y(x) \) is a singleton.
Theorem

Let \(u(x) = \min_{s \in S} F(s, x) \) as above. Given \(x \in A \), define

\[
M(x) = \{ s \in S : u(x) = F(s, x) \},
\]

\[
Y(x) = \{ D_x F(s, x) : s \in M(x) \}.
\]

Then, for any \(x \in A \)

\[
D^+ u(x) = \text{co} Y(x).
\]

In particular, \(u \) is differentiable at \(x \) if and only if \(Y(x) \) is a singleton.
Marginal functions (II)

Theorem

Let \(u(x) = \min_{s \in S} F(s, x) \) as above. Given \(x \in A \), define

\[
M(x) = \{ s \in S : u(x) = F(s, x) \},
\]

\[
Y(x) = \{ D_x F(s, x) : s \in M(x) \}.
\]

Then, for any \(x \in A \)

\[
D^+ u(x) = \text{co} Y(x).
\]

In particular, \(u \) is differentiable at \(x \) if and only if \(Y(x) \) is a singleton.
Corollary

Let S be a nonempty closed subset of \mathbb{R}^n. Then

- d_S is differentiable at $x \notin S$ if and only if $\text{proj}_S(x)$ is a singleton and in this case

$$Dd_S(x) = \frac{x - y}{|x - y|}$$

where y is the unique element of $\text{proj}_S(x)$.

- If $\text{proj}_S(x)$ is not a singleton then we have

$$D^+ d_S(x) = \text{co} \left\{ \frac{x - y}{|x - y|} : y \in \text{proj}_S(x) \right\},$$

while $D^- d_S(x) = \emptyset$.
Corollary

Let S be a nonempty closed subset of \mathbb{R}^n. Then

- d_S is differentiable at $x \notin S$ if and only if $\text{proj}_S(x)$ is a singleton and in this case
 \[Dd_S(x) = \frac{x - y}{|x - y|} \]
 where y is the unique element of $\text{proj}_S(x)$.

- If $\text{proj}_S(x)$ is not a singleton then we have
 \[D^+d_S(x) = \text{co} \left\{ \frac{x - y}{|x - y|} : y \in \text{proj}_S(x) \right\}, \]
 while $D^-d_S(x) = \emptyset$.
Outline

1. Introduction to semiconcave functions, generalized differentials, and singularities
 - Semiconcave functions
 - Semiconcavity of value functions
 - Generalized differentials
 - Optimal synthesis
 - Singular sets, rectifiability
Back to the Mayer problem

- \((f, A)\) control process in \(\mathbb{R}^n\), \(T > 0\)
- given \((t, x)\) and a control \(\alpha : [t, T] \rightarrow A\)

\[y(\cdot; t, x, \alpha) \text{ solution of } \begin{cases} \dot{y}(s) = f(y(s), \alpha(s)) & s \in [t, T] \\ y(t) = x \end{cases} \]

- \(\psi : \mathbb{R}^n \rightarrow \mathbb{R}\) final cost

Mayer problem: minimize \(\psi(y(T; t, x, \alpha))\) over all \(\alpha \in L^1(t, T; A)\)

Value function \(V(t, x) = \min_{\alpha} \psi(y(T; t, x, \alpha))\).
Back to the Mayer problem

- \((f, A)\) control process in \(\mathbb{R}^n\), \(T > 0\)
- given \((t, x)\) and a control \(\alpha : [t, T] \rightarrow A\)

\[
y(\cdot; t, x, \alpha) \quad \text{solution of} \quad \begin{cases}
\dot{y}(s) = f(y(s), \alpha(s)) & s \in [t, T] \\
y(t) = x
\end{cases}
\]

- \(\psi : \mathbb{R}^n \rightarrow \mathbb{R}\) final cost

Mayer problem: minimize \(\psi(y(T; t, x, \alpha))\) over all \(\alpha \in L^1(t, T; A)\)

Value function \(V(t, x) = \min_{\alpha} \psi(y(T; t, x, \alpha))\).
Back to the Mayer problem

- \((f, A)\) control process in \(\mathbb{R}^n\), \(T > 0\)
- given \((t, x)\) and a control \(\alpha : [t, T] \to A\)

\[
y(\cdot; t, x, \alpha) \quad \text{solution of} \quad \begin{cases}
y'(s) = f(y(s), \alpha(s)) & s \in [t, T] \\
y(t) = x
\end{cases}
\]

- \(\psi : \mathbb{R}^n \to \mathbb{R}\) final cost

Mayer problem: minimize \(\psi(y(T; t, x, \alpha))\) over all \(\alpha \in L^1(t, T; A)\)

Value function \(V(t, x) = \min_\alpha \psi(y(T; t, x, \alpha))\).
Back to the Mayer problem

- \((f, A)\) control process in \(\mathbb{R}^n\), \(T > 0\)
- given \((t, x)\) and a control \(\alpha : [t, T] \rightarrow A\)

\[y(\cdot; t, x, \alpha)\] solution of
\[
\begin{cases}
\dot{y}(s) = f(y(s), \alpha(s)) & s \in [t, T] \\
y(t) = x
\end{cases}
\]

- \(\psi : \mathbb{R}^n \rightarrow \mathbb{R}\) final cost

Mayer problem: minimize \(\psi(y(T; t, x, \alpha))\) over all \(\alpha \in L^1(t, T; A)\)

Value function \(V(t, x) = \min_{\alpha} \psi(y(T; t, x, \alpha))\).
We assume in the following

- A compact
- $f(x, a)$ of class $C^{1,1}$ w.r.t. x
- $\psi : \mathbb{R}^n \to \mathbb{R}$ of class C^1 and semiconcave
Pontryagin’s maximum principle

Theorem

- \(\alpha^* \in L^1(0, T; A) \) and \(y^*(\cdot) := y(\cdot; x, \alpha^*) \) optimal pair

\[
\psi(y^*(T)) = \min_{\alpha \in L^1(0,T;A)} \psi(y(T; x, \alpha))
\]

- let \(p^* \) be the solution of the adjoint problem

\[
\begin{aligned}
\dot{p}(s) &= -f_x(y^*(s), \alpha^*(s))^\text{tr} p(s) \quad (s \in [0, T]) \\
p(T) &= D\psi(y^*(T))
\end{aligned}
\]

then

\[
p^*(s) \cdot f(y^*(s), \alpha^*(s)) = \min_{a \in A} p^*(s) \cdot f(y^*(s), a) \quad (s \in [0, T] \text{ a.e.})
\]
Pontryagin’s maximum principle

Theorem

- \(\alpha^* \in L^1(0, T; A) \) and \(y^*(\cdot) := y(\cdot; x, \alpha^*) \) optimal pair

\[
\psi(y^*(T)) = \min_{\alpha \in L^1(0,T;A)} \psi(y(T; x, \alpha))
\]

- let \(p^* \) be the solution of the adjoint problem

\[
\begin{aligned}
\dot{p}(s) &= -f_x(y^*(s), \alpha^*(s))^\text{tr} p(s) \quad (s \in [0, T]) \\
p(T) &= D\psi(y^*(T))
\end{aligned}
\]

then

\[
p^*(s) \cdot f(y^*(s), \alpha^*(s)) = \min_{a \in A} p^*(s) \cdot f(y^*(s), a) \quad (s \in [0, T] \text{ a.e.})
\]
Denote by $\nabla^+ V(t, x)$, $\nabla^- V(t, x)$ the super- and subdifferential of V at (t, x) with respect to the x variable alone.

Theorem

(Clarke-Vinter 1987, Cannarsa-Frankowska, 1991) Under the previous assumptions, we have that

$$p(s) \in \nabla^+ V(s, y(s)), \quad \forall s \in [t, T].$$

If in addition $p(t) \in \nabla^- V(t, y(t))$, then we also have

$$p(s) \in \nabla^- V(s, y(s)), \quad \forall s \in [t, T].$$
Denote by $\nabla^+ V(t, x)$, $\nabla^- V(t, x)$ the super- and subdifferential of V at (t, x) with respect to the x variable alone.

Theorem

(Clarke-Vinter 1987, Cannarsa-Frankowska, 1991) Under the previous assumptions, we have that

$$p(s) \in \nabla^+ V(s, y(s)), \quad \forall s \in [t, T].$$

If in addition $p(t) \in \nabla^- V(t, y(t))$, then we also have

$$p(s) \in \nabla^- V(s, y(s)), \quad \forall s \in [t, T].$$
Dual arc inclusion for the Mayer problem

Denote by $\nabla^+ V(t, x)$, $\nabla^- V(t, x)$ the super- and subdifferential of V at (t, x) with respect to the x variable alone.

Theorem

(Clarke-Vinter 1987, Cannarsa-Frankowska, 1991) Under the previous assumptions, we have that

$$p(s) \in \nabla^+ V(s, y(s)), \quad \forall s \in [t, T].$$

If in addition $p(t) \in \nabla^- V(t, y(t))$, then we also have

$$p(s) \in \nabla^- V(s, y(s)), \quad \forall s \in [t, T].$$
Dual arc inclusion for the Mayer problem

Denote by $\nabla^+ V(t, x)$, $\nabla^- V(t, x)$ the super- and subdifferential of V at (t, x) with respect to the x variable alone.

Theorem

(Clarke-Vinter 1987, Cannarsa-Frankowska, 1991) Under the previous assumptions, we have that

$$p(s) \in \nabla^+ V(s, y(s)), \quad \forall s \in [t, T].$$

If in addition $p(t) \in \nabla^- V(t, y(t))$, then we also have

$$p(s) \in \nabla^- V(s, y(s)), \quad \forall s \in [t, T].$$
Hamiltonian form of PMP

Assume that $f(x, A)$ is a (n-dimensional) uniformly convex set for all x.

This implies that $H(x, p) = \max_{a \in A} -p \cdot f(x, a)$ is smooth for $p \neq 0$.

Theorem

Let (α, y) be an optimal pair for the point $(t, x) \in [0, T] \times \mathbb{R}^n$ and let $p : [t, T] \to \mathbb{R}^n$ be a dual arc associated with (α, y) such that $p(\bar{s}) \neq 0$ for some $\bar{s} \in [t, T]$. Then $p(s) \neq 0$ for all $s \in [t, T]$ and (y, p) solves the system

\[
\begin{align*}
 y'(s) &= -H_p(y(s), p(s)) \\
 p'(s) &= H_x(y(s), p(s)) \\
\end{align*}
\]

$s \in [t, T]$.
Hamiltonian form of PMP

Assume that $f(x, A)$ is a (n-dimensional) uniformly convex set for all x.

This implies that $H(x, p) = \max_{a \in A} -p \cdot f(x, a)$ is smooth for $p \neq 0$.

Theorem

Let (α, y) be an optimal pair for the point $(t, x) \in [0, T] \times \mathbb{R}^n$ and let $p : [t, T] \to \mathbb{R}^n$ be a dual arc associated with (α, y) such that $p(\bar{s}) \neq 0$ for some $\bar{s} \in [t, T]$. Then $p(s) \neq 0$ for all $s \in [t, T]$ and (y, p) solves the system

\[
\begin{align*}
 y'(s) &= -H_p(y(s), p(s)) \\
 p'(s) &= H_x(y(s), p(s))
\end{align*}
\]

$s \in [t, T]$.
Hamiltonian form of PMP

Assume that $f(x, A)$ is a (n)-dimensional uniformly convex set for all x.

This implies that $H(x, p) = \max_{a \in A} -p \cdot f(x, a)$ is smooth for $p \neq 0$.

Theorem

Let (α, y) be an optimal pair for the point $(t, x) \in [0, T] \times \mathbb{R}^n$ and let $p : [t, T] \to \mathbb{R}^n$ be a dual arc associated with (α, y) such that $p(\bar{s}) \neq 0$ for some $\bar{s} \in [t, T]$. Then $p(s) \neq 0$ for all $s \in [t, T]$ and (y, p) solves the system

\[
\begin{align*}
 y'(s) &= -H_p(y(s), p(s)) \\
 p'(s) &= H_x(y(s), p(s))
\end{align*}
\]

$s \in [t, T]$.
Hamiltonian form of PMP

Assume that \(f(x, A) \) is a \((n) \)-dimensional uniformly convex set for all \(x \).

This implies that \(H(x, p) = \max_{a \in A} -p \cdot f(x, a) \) is smooth for \(p \neq 0 \).

Theorem

Let \((\alpha, y)\) be an optimal pair for the point \((t, x) \in [0, T] \times \mathbb{R}^n\) and let \(p : [t, T] \to \mathbb{R}^n\) be a dual arc associated with \((\alpha, y)\) such that \(p(\bar{s}) \neq 0\) for some \(\bar{s} \in [t, T]\). Then \(p(s) \neq 0\) for all \(s \in [t, T]\) and \((y, p)\) solves the system

\[
\begin{align*}
y'(s) &= -H_p(y(s), p(s)) \\
p'(s) &= H_x(y(s), p(s))
\end{align*}
\]

\(s \in [t, T]\).
optimal synthesis

Theorem

Given a point \((t, x) \in [0, T] \times \mathbb{R}^n\) and a vector \(\bar{p} = (\bar{p}_t, \bar{p}_x) \in D^* V(t, x)\) such that \(\bar{p} \neq 0\), let us associate with \(\bar{p}\) the pair \((y(\cdot), p(\cdot))\) which solves the Hamiltonian system with initial conditions \(y(t) = x, p(t) = \bar{p}_x\).

Then \(y(\cdot)\) is an optimal trajectory for \((t, x)\) and \(p(\cdot)\) is a dual arc associated with \(y(\cdot)\).

The map from \(D^* V(t, x)\) to the set of optimal trajectories from \((t, x)\) defined in this way is injective, and it is one-to-one if \(0 \notin D^* V(t, x)\).

Corollary

If \(0 \notin D^* V(t, x)\), then the optimal trajectory at \((t, x)\) is unique if and only if \(V\) is differentiable at \((t, x)\).
Theorem

Given a point \((t, x) \in [0, T] \times \mathbb{R}^n\) and a vector \(\bar{p} = (\bar{p}_t, \bar{p}_x) \in D^* V(t, x)\) such that \(\bar{p} \neq 0\), let us associate with \(\bar{p}\) the pair \((y(\cdot), p(\cdot))\) which solves the Hamiltonian system with initial conditions \(y(t) = x, p(t) = \bar{p}_x\).

Then \(y(\cdot)\) is an optimal trajectory for \((t, x)\) and \(p(\cdot)\) is a dual arc associated with \(y(\cdot)\).

The map from \(D^* V(t, x)\) to the set of optimal trajectories from \((t, x)\) defined in this way is injective, and it is one-to-one if \(0 \notin D^* V(t, x)\).

Corollary

If \(0 \notin D^* V(t, x)\), then the optimal trajectory at \((t, x)\) is unique if and only if \(V\) is differentiable at \((t, x)\).
Theorem

Given a point \((t, x) \in [0, T] \times \mathbb{R}^n\) and a vector \(\bar{p} = (\bar{p}_t, \bar{p}_x) \in D^* V(t, x)\) such that \(\bar{p} \neq 0\), let us associate with \(\bar{p}\) the pair \((y(\cdot), p(\cdot))\) which solves the Hamiltonian system with initial conditions \(y(t) = x, p(t) = \bar{p}_x\).

Then \(y(\cdot)\) is an optimal trajectory for \((t, x)\) and \(p(\cdot)\) is a dual arc associated with \(y(\cdot)\).

The map from \(D^* V(t, x)\) to the set of optimal trajectories from \((t, x)\) defined in this way is injective, and it is one-to-one if \(0 \notin D^* V(t, x)\).

Corollary

If \(0 \notin D^* V(t, x)\), then the optimal trajectory at \((t, x)\) is unique if and only if \(V\) is differentiable at \((t, x)\).
Theorem

Given a point \((t, x) \in [0, T] \times \mathbb{R}^n\) and a vector \(\bar{p} = (\bar{p}_t, \bar{p}_x) \in D^* V(t, x)\) such that \(\bar{p} \neq 0\), let us associate with \(\bar{p}\) the pair \((y(\cdot), p(\cdot))\) which solves the Hamiltonian system with initial conditions \(y(t) = x, p(t) = \bar{p}_x\).

Then \(y(\cdot)\) is an optimal trajectory for \((t, x)\) and \(p(\cdot)\) is a dual arc associated with \(y(\cdot)\).

The map from \(D^* V(t, x)\) to the set of optimal trajectories from \((t, x)\) defined in this way is injective, and it is one-to-one if \(0 \notin D^* V(t, x)\).

Corollary

If \(0 \notin D^* V(t, x)\), then the optimal trajectory at \((t, x)\) is unique if and only if \(V\) is differentiable at \((t, x)\).
Theorem

Given a point \((t, x) \in [0, T] \times \mathbb{R}^n\) and a vector \(\bar{p} = (\bar{p}_t, \bar{p}_x) \in D^* V(t, x)\) such that \(\bar{p} \neq 0\), let us associate with \(\bar{p}\) the pair \((y(\cdot), p(\cdot))\) which solves the Hamiltonian system with initial conditions \(y(t) = x, p(t) = \bar{p}_x\).

Then \(y(\cdot)\) is an optimal trajectory for \((t, x)\) and \(p(\cdot)\) is a dual arc associated with \(y(\cdot)\).

The map from \(D^* V(t, x)\) to the set of optimal trajectories from \((t, x)\) defined in this way is injective, and it is one-to-one if \(0 \notin D^* V(t, x)\).

Corollary

If \(0 \notin D^* V(t, x)\), then the optimal trajectory at \((t, x)\) is unique if and only if \(V\) is differentiable at \((t, x)\).
Outline

1. Introduction to semiconcave functions, generalized differentials, and singularities
 - Semiconcave functions
 - Semiconcavity of value functions
 - Generalized differentials
 - Optimal synthesis
 - Singular sets, rectifiability
The singular set

Given $u : A \to \mathbb{R}$ semiconcave, the *singular set* of u is

$$\Sigma(u) = \{ x \in A : u \text{ is not differentiable at } x \}$$
$$= \{ x \in A : D^+u(x) \text{ is not a singleton} \}.$$

We know: Σ has measure zero.

Much sharper results can be given in terms of *rectifiability* properties.
The singular set

Given $u : A \to \mathbb{R}$ semiconcave, the *singular set* of u is

$$\Sigma(u) = \{ x \in A : u \text{ is not differentiable at } x \} = \{ x \in A : D^+ u(x) \text{ is not a singleton} \}.$$

We know: Σ has measure zero.

Much sharper results can be given in terms of *rectifiability* properties.
The singular set

Given $u : A \to \mathbb{R}$ semiconcave, the *singular set* of u is

$$\Sigma(u) = \{ x \in A : u \text{ is not differentiable at } x \} = \{ x \in A : D^+ u(x) \text{ is not a singleton} \}.$$

We know: Σ has measure zero.

Much sharper results can be given in terms of *rectifiability* properties.
Let $k \in \{0, 1, \ldots, n\}$ and let $C \subset \mathbb{R}^n$.

- C is called a \textit{k–rectifiable} set if there exists a Lipschitz continuous function $f : \mathbb{R}^k \to \mathbb{R}^n$ such that $C \subset f(\mathbb{R}^k)$.

- C is called a \textit{countably k–rectifiable} set if it is the union of a countable family of k–rectifiable sets.

- C is called a \textit{countably \mathcal{H}^k–rectifiable set} if there exists a countably k–rectifiable set $E \subset \mathbb{R}^n$ such that $\mathcal{H}^k(C \setminus E) = 0$. Here \mathcal{H}^k denotes the k-dimensional Hausdorff measure.
rectifiable sets

Let \(k \in \{0, 1, \ldots, n\} \) and let \(C \subset \mathbb{R}^n \).

- \(C \) is called a \(k \)-rectifiable set if there exists a Lipschitz continuous function \(f : \mathbb{R}^k \rightarrow \mathbb{R}^n \) such that \(C \subset f(\mathbb{R}^k) \).
- \(C \) is called a countably \(k \)-rectifiable set if it is the union of a countable family of \(k \)-rectifiable sets.
- \(C \) is called a countably \(\mathcal{H}^k \)-rectifiable set if there exists a countably \(k \)-rectifiable set \(E \subset \mathbb{R}^n \) such that \(\mathcal{H}^k(C \setminus E) = 0 \). Here \(\mathcal{H}^k \) denotes the \(k \)-dimensional Hausdorff measure.
Let $k \in \{0, 1, \ldots, n\}$ and let $C \subset \mathbb{R}^n$.

- C is called a k–rectifiable set if there exists a Lipschitz continuous function $f : \mathbb{R}^k \to \mathbb{R}^n$ such that $C \subset f(\mathbb{R}^k)$.

- C is called a countably k–rectifiable set if it is the union of a countable family of k–rectifiable sets.

- C is called a countably \mathcal{H}^k–rectifiable set if there exists a countably k–rectifiable set $E \subset \mathbb{R}^n$ such that $\mathcal{H}^k(C \setminus E) = 0$. Here \mathcal{H}^k denotes the k-dimensional Hausdorff measure.
rectifiability results

It is easy to see that, if \(u \) is semiconcave with a linear modulus, then \(Du \) is a function of bounded variation.

The singular set \(\Sigma(u) \) coincides with the *jump set* of \(Du \) in the theory of \(BV \) functions.

Standard results about \(BV \) functions then imply that \(\Sigma(u) \) is *countably \(H^{n-1} \)-rectifiable*.

More precise results can be obtained by a direct approach.
rectifiability results

It is easy to see that, if u is semiconcave with a linear modulus, then Du is a function of bounded variation.

The singular set $\Sigma(u)$ coincides with the jump set of Du in the theory of BV functions.

Standard results about BV functions then imply that $\Sigma(u)$ is countably \mathcal{H}^{n-1}–rectifiable.

More precise results can be obtained by a direct approach.
rectifiability results

It is easy to see that, if u is semiconcave with a linear modulus, then Du is a function of bounded variation.

The singular set $\Sigma(u)$ coincides with the *jump set* of Du in the theory of BV functions.

Standard results about BV functions then imply that $\Sigma(u)$ is *countably H^{n-1}–rectifiable*.

More precise results can be obtained by a direct approach.
It is easy to see that, if u is semiconcave with a linear modulus, then Du is a function of bounded variation.

The singular set $\Sigma(u)$ coincides with the jump set of Du in the theory of BV functions.

Standard results about BV functions then imply that $\Sigma(u)$ is countably \mathcal{H}^{n-1}–rectifiable.

More precise results can be obtained by a direct approach.
rectifiability results (II)

\[D^+ u(x) \text{ is a convex set} \implies \text{it has an integer dimension.} \]

For \(k = 1, \ldots, n \), we define

\[\Sigma^k(u) = \{ x \in \Sigma : \dim(D^+ u(x)) = k \}. \]

Theorem

If \(u : \Omega \to \mathbb{R} \) is semiconcave (with a general modulus) then the set \(\Sigma^k(u) \) is countably \((n - k)\)-rectifiable for any \(k = 1, \ldots, n \).

rectifiability results (II)

$D^+ u(x)$ is a convex set \implies it has an integer dimension.

For $k = 1, \ldots, n$, we define

$$\Sigma^k(u) = \{x \in \Sigma : \dim(D^+ u(x)) = k\}.$$

Theorem

If $u : \Omega \to \mathbb{R}$ is semiconcave (with a general modulus) then the set $\Sigma^k(u)$ is countably $(n-k)$-rectifiable for any $k = 1, \ldots, n$.

rectifiability results (II)

\[D^+ u(x) \] is a convex set \(\implies \) it has an integer dimension.

For \(k = 1, \ldots, n \), we define

\[\Sigma^k(u) = \{ x \in \Sigma : \dim(D^+ u(x)) = k \}. \]

Theorem

If \(u : \Omega \to \mathbb{R} \) is semiconcave (with a general modulus) then the set \(\Sigma^k(u) \) is countably \((n - k)\)-rectifiable for any \(k = 1, \ldots, n \).

rectifiability results (II)

\[D^+ u(x) \] is a convex set \(\implies \) it has an integer dimension.

For \(k = 1, \ldots, n \), we define

\[\Sigma^k(u) = \{ x \in \Sigma : \dim(D^+ u(x)) = k \} \].

Theorem

If \(u : \Omega \to \mathbb{R} \) *is semiconcave (with a general modulus) then the set* \(\Sigma^k(u) \) *is countably* \((n - k) \)-rectifiable for any \(k = 1, \ldots, n \).*

example

Let \(u(x, y) = -|x| - |y| \), concave on \(\mathbb{R}^2 \).

Then \(\Sigma(u) = \{(x, y) : x = 0 \text{ or } y = 0\} \).

If \(x = 0 \) and \(y > 0 \), then \(D^+u(x, y) = [-1, 1] \times \{-1\} \). Similarly, any point with \(x = 0, y \neq 0 \), or with \(x \neq 0, y = 0 \) belongs to \(\Sigma^1(u) \).

Finally, \(D^+u(0, 0) = [-1, 1] \times [-1, 1] \), and \(\Sigma^2(u) = \{(0, 0)\} \).
Let \(u(x, y) = -|x| - |y| \), concave on \(\mathbb{R}^2 \).

Then \(\Sigma(u) = \{(x, y) : x = 0 \text{ or } y = 0\} \).

If \(x = 0 \) and \(y > 0 \), then \(D^+ u(x, y) = [-1, 1] \times \{-1\} \). Similarly, any point with \(x = 0, y \neq 0 \), or with \(x \neq 0, y = 0 \) belongs to \(\Sigma^1(u) \).

Finally, \(D^+ u(0, 0) = [-1, 1] \times [-1, 1] \), and \(\Sigma^2(u) = \{(0, 0)\} \).
Let $u(x, y) = -|x| - |y|$, concave on \mathbb{R}^2.

Then $\Sigma(u) = \{(x, y) : x = 0 \text{ or } y = 0\}$.

If $x = 0$ and $y > 0$, then $D^+ u(x, y) = [-1, 1] \times \{-1\}$. Similarly, any point with $x = 0$, $y \neq 0$, or with $x \neq 0$, $y = 0$ belongs to $\Sigma^1(u)$.

Finally, $D^+ u(0, 0) = [-1, 1] \times [-1, 1]$, and $\Sigma^2(u) = \{(0, 0)\}$.
Let \(u(x, y) = -|x| - |y| \), concave on \(\mathbb{R}^2 \).

Then \(\Sigma(u) = \{(x, y) : x = 0 \text{ or } y = 0\} \).

If \(x = 0 \) and \(y > 0 \), then \(D^+u(x, y) = [-1, 1] \times \{-1\} \). Similarly, any point with \(x = 0, y \neq 0 \), or with \(x \neq 0, y = 0 \) belongs to \(\Sigma^1(u) \).

Finally, \(D^+u(0, 0) = [-1, 1] \times [-1, 1] \), and \(\Sigma^2(u) = \{(0, 0)\} \).
example

Let \(u(x, y) = -|x| - |y| \), concave on \(\mathbb{R}^2 \).

Then \(\Sigma(u) = \{(x, y) : x = 0 \text{ or } y = 0\} \).

If \(x = 0 \) and \(y > 0 \), then \(D^+ u(x, y) = [-1, 1] \times \{-1\} \). Similarly, any point with \(x = 0, y \neq 0 \), or with \(x \neq 0, y = 0 \) belongs to \(\Sigma^1(u) \).

Finally, \(D^+ u(0, 0) = [-1, 1] \times [-1, 1] \), and \(\Sigma^2(u) = \{(0, 0)\} \).
Definition

Let $S \subset \mathbb{R}^n$ and $x \in \overline{S}$ be given. The contingent cone (or Bouligand’s tangent cone) to S at x is the set

$$T(x, S) = \left\{ \lim_{i \to \infty} \frac{x_i - x}{t_i} : x_i \in S, x_i \to x, t_i \in \mathbb{R}_+, t_i \downarrow 0 \right\}.$$

The vector space generated by $T(x, S)$ is called tangent space to S at x and is denoted by $\text{Tan}(x, S)$.

sketch of the proof
Theorem

Let $S \subset \mathbb{R}^n$ be a set such that $\dim \text{Tan}(x, S) \leq k$, for all $x \in S$, for a given integer $k \in [0, n]$. Then S is countably k–rectifiable.

Given $\rho > 0$, we denote by $\Sigma^k_\rho(u)$ the set of all $x \in \Sigma^k(u)$ such that $D^+u(x)$ contains a k–dimensional sphere of radius ρ.

Theorem

If u is semiconcave in Ω, then $\text{Tan}(x, \Sigma^k_\rho(u)) \subset [D^+u(x)]^\perp$, $\forall x \in \Sigma^k_\rho(u)$.

The rectifiability theorem follows. □
Theorem

Let $S \subset \mathbb{R}^n$ be a set such that $\dim \text{Tan}(x, S) \leq k$, for all $x \in S$, for a given integer $k \in [0, n]$. Then S is countably k–rectifiable.

Given $\rho > 0$, we denote by $\Sigma_{\rho}^k(u)$ the set of all $x \in \Sigma^k(u)$ such that $D^+u(x)$ contains a k–dimensional sphere of radius ρ.

Theorem

If u is semiconcave in Ω, then

$$\text{Tan}(x, \Sigma_{\rho}^k(u)) \subset [D^+u(x)]^\perp, \quad \forall \ x \in \Sigma_{\rho}^k(u).$$

The rectifiability theorem follows. □
Theorem

Let $S \subset \mathbb{R}^n$ be a set such that $\dim \operatorname{Tan}(x, S) \leq k$, for all $x \in S$, for a given integer $k \in [0, n]$. Then S is countably k–rectifiable.

Given $\rho > 0$, we denote by $\Sigma^k_{\rho}(u)$ the set of all $x \in \Sigma^k(u)$ such that $D^+ u(x)$ contains a k–dimensional sphere of radius ρ.

Theorem

If u is semiconcave in Ω, then

$$\operatorname{Tan}(x, \Sigma^k_{\rho}(u)) \subset [D^+ u(x)]^\perp, \quad \forall x \in \Sigma^k_{\rho}(u).$$

The rectifiability theorem follows. \qed
Thank you for your attention!