Tutorial on Control and State Constrained Optimal Control Problems and Applications – Part 3: Pure State Constraints

Helmut Maurer

University of Münster
Institute of Computational and Applied Mathematics

SADCO Summer School
Imperial College, London, September 5, 2011
Outline

1. Theory of Optimal Control Problems with Pure State Constraints
2. Academic Example: order $q = 1$ of the state constraint
3. Van der Pol Oscillator: order $q = 1$ of the state constraint
4. Example: Immune Response
5. Example: Optimal Control of a Model of Climate Change
Optimal Control Problem with Pure State Constraints

State \(x(t) \in \mathbb{R}^n \), Control \(u(t) \in \mathbb{R} \) (for simplicity). All functions are assumed to be sufficiently smooth.

Dynamics and Boundary Conditions

\[
\dot{x}(t) = f(x(t), u(t)), \quad t \in [0, t_f],
\]

\[
x(0) = x_0 \in \mathbb{R}^n, \quad \psi(x(t_f)) = 0 \in \mathbb{R}^k,
\]

\[
(0 = \varphi(x(0), x(t_f)), \text{ mixed boundary conditions})
\]

Pure State Constraints and Control Bounds

\[
s(x(t)) \leq 0, \quad t \in [0, t_f], \quad (s : \mathbb{R}^n \to \mathbb{R})
\]

\[
\alpha \leq u(t) \leq \beta, \quad t \in [0, t_f].
\]

Minimize

\[
J(u, x) = g(x(t_f)) + \int_0^{t_f} f_0(x(t), u(t)) \, dt
\]
Hamiltonian

\[H(x, \lambda, u) = \lambda_0 f(x, u) + \lambda f(x, u) \quad \lambda \in \mathbb{R}^n \]
(row vector)

Let \((u, x) \in \mathcal{L}^\infty([0, t_f], \mathbb{R}) \times \mathcal{W}^{1,\infty}([0, t_f], \mathbb{R}^n)\) be a locally optimal pair of functions. Then there exist

- an adjoint (costate) function \(\lambda \in \mathcal{W}^{1,\infty}([0, t_f], \mathbb{R}^n)\) and a scalar \(\lambda_0 \geq 0\),

- a multiplier function of bounded variation \(\mu \in \mathcal{B}V^\infty([0, t_f], \mathbb{R})\),

- a multiplier \(\rho \in \mathbb{R}\) associated to the boundary condition \(\psi(x(t_f)) = 0\),

that satisfy the following conditions for a.a. \(t \in [0, t_f]\), where the argument \((t)\) denotes evaluations along the trajectory \((x(t), u(t), \lambda(t))\) :
Minimum Principle of Pontryagin et al. (Hestenes)

(i) Adjoint integral equation and transversality condition:

\[\lambda(t) = \int_{t}^{t_f} H_x(s) \, ds + \int_{t}^{t_f} s_x(x(s)) \, d\mu(s) \]

\[+ (\lambda_0 g + \rho \psi)_x(x(t_f)) \quad \text{(if } s(x(t_f)) < 0 \text{)}, \]

(iiia) Minimum Condition for Hamiltonian:

\[H(x(t), \lambda(t), u(t)) = \min \{ H(x(t), \lambda(t), u) \mid \alpha \leq u \leq \beta \} \]

(iii) positive measure \(d\mu \) and complementarity condition:

\[d\mu(t) \leq 0 \text{ and } \int_{0}^{t_f} s_x(t)) \, d\mu(t) = 0 \]
Order of a state constraint $s(x(t)) \leq 0$

Define recursively functions $s^{(k)}(x, u)$ by

$$s^{(0)}(x, u) = s(x),$$

$$s^{(k+1)}(x, u) = \frac{\partial s^{(k)}}{\partial x}(x, u) f(x, u), \quad (k = 0, 1, \ldots)$$

Suppose there exist $q \in \mathbb{N}$ with

$$\frac{\partial s^{(k)}}{\partial u}(x, u) \equiv 0, \text{ i.e., } s^{(k)} = s^{(k)}(x), \quad (k = 0, 1, \ldots, q - 1),$$

$$\frac{\partial s^{(q)}}{\partial u}(x, u) \neq 0.$$

Then along a solution of $\dot{x}(t) = f(x(t), u(t))$ we have

$$s^{(k)}(x(t)) = \frac{d^k}{dt^k} s(x(t)) \quad (k = 0, 1, \ldots, q - 1),$$

$$s^{(q)}(x(t), u(t)) = \frac{d^q}{dt^q} s(x(t))$$
Regularity conditions to ensure \(d\mu(t) = \eta(t)\,dt \)

Regularity assumption on a boundary arc \(s(x(t)) = 0, \ t_1 \leq t \leq t_2 \)

\[
\frac{\partial s^{(q)}}{\partial u}(x(t), u(t)) \neq 0 \quad \forall \ t_1 \leq t \leq t_2.
\]

Assumption on boundary control

There exists a sufficiently smooth boundary control \(u = u_b(x) \) with \(s(x, u_b(x)) \equiv 0 \).

Assumption: \(\alpha < u(t) = u_b(x(t)) < \beta \quad \forall \ t_1 < t < t_2 \).

Regularity of multiplier (measure) \(\mu \)

The regularity and assumption on boundary control imply that there exist a smooth multiplier \(\eta(t) \) with

\[
d\mu(t) = \eta(t)\,dt \quad t_1 < t < t_2
\]
Minimum Principle under regularity

Augmented Hamiltonian

\[
H(x, \lambda, \eta, u) = H(x, \lambda, u) + \eta \cdot s(x)
\]

Adjoint equation and jump conditions

\[
\frac{d\lambda}{dt}(t) = -H_x(t) = -H_x(t) - \eta(t)s_x(x(t))
\]

\[
\lambda(t_{k+}) = \lambda(t_{k-}) - \nu_k s_x(x(t_k)), \quad \nu_k \geq 0
\]

at each contact or junction time \(t_k\), \(\nu_k = \mu(t_{k+}) - \mu(t_{k-})\)

Minimum condition

\[
H(x(t), \lambda(t), u(t)) = \min \{ H(x(t), \lambda(t), u) \mid \alpha \leq u \leq \beta \}
\]

\[
H_u(t) = 0 \quad \text{on boundary arcs} \quad t_1^+ < t < t_2^-
\]
Academic Example

Minimize \[J(x, u) = \int_0^2 (u^2 + x^2) \, dt \]
subject to \[\dot{x} = x^2 - u, \quad x(0) = 1, \; x(2) = 1, \]
and the state constraint \[x(t) \geq a, \quad \forall \quad 0 \leq t \leq 2. \]

Boundary arc \(x(t) \equiv a = 0.7 \) for \(t_1 = 0.614 \leq t \leq t_2 = 1.386 \).
Academic Example: state and control trajectories

- **State Trajectories $x(t)$**
 - Data files: "x.dat", "x-a=0.6.dat", "x-a=0.7.dat", "x-a=0.85.dat"
 - Range: $0 \leq t \leq 2$

- **Control u**
 - Data files: "u.dat", "u-a=0.6.dat", "u-a=0.7.dat", "u-a=0.85.dat"
 - Range: $-0.5 \leq u \leq 2.5$
Academic Example: Computation of Multiplier η

State constraint: $s(x) = a - x \leq 0$.

Order of the state constraint is $q = 1$, since

$$s^{(1)}(x, u) = -\dot{x} = -x^2 + u, \quad (s^{(1)})_u = 1.$$

Boundary control $u = u_b(x)$ with $s^{(1)}(x, u_b(x)) \equiv 0$ is given by

$$u_b(x) = x^2 = a^2.$$

Augmented Hamiltonian and adjoint equation:

$$\mathcal{H}(x, \lambda, \eta, u) = u^2 + x^2 + \lambda(x^2 - u) + \eta(a - x),$$

$$\dot{\lambda} = -\mathcal{H}_x = -2x - 2\lambda x + \eta.$$

The minimum condition $0 = H_u = 2u - \lambda$ gives $u = \lambda/2$. Since $u = a^2$ holds on a boundary arc, we get $\dot{\lambda} = 0$ and hence the multiplier η on the boundary

$$\eta(t) \equiv 2a(1 + 2a^2) > 0.$$
Theory of Optimal Control Problems with Pure State Constraints

Academic Example: order $q = 1$ of the state constraint

Van der Pol Oscillator: order $q = 1$ of the state constraint

Example: Immune Response

Example: Optimal Control of a Model of Climate Change

Academic Example: state and control trajectories

![State trajectories](image1)

State trajectories $x(t)$

![Multiplier eta](image2)

Multiplier η
Van der Pol Oscillator

Minimize $J(x, u) = \int_0^{t_f} (u^2 + x_1^2 + x_2^2) \, dt \quad (t_f = 4)$,

subject to

$\dot{x}_1 = x_2$, $\dot{x}_2 = -x_1 + x_2(1 - x_1^2) + u$,

$x_1(0) = x_2(0) = 1$, $x_1(t_f) = x_2(t_f) = 0$,

state constraint $x_2(t) \geq a \quad \forall \ 0 \leq t \leq t_f$.

Boundary arc $x_2(t) \equiv a = -0.4$ for $t_1 = 0.887 \leq t \leq t_2 = 2.62$.
Van der Pol : Computation of Multiplier η

Order of the state constraint is $q = 1$, since $s(x) = a - x$ and

$$s^{(1)}(x, u) = -\dot{x}_2 = x_1 + x_2(x_1^2 - 1) - u, \quad (s^{(1)})_u = -1 \neq 0.$$

Boundary control $u = u_b(x)$ with $s^{(1)}(x, u_b(x)) \equiv 0$ is given by

$$u_b(x) = x_1 + x_2(x_1^2 - 1) = x_1 + a(x_1^2 - 1).$$

Augmented Hamiltonian and adjoint equation:

$$\mathcal{H}(x, \lambda, \eta, u) = u^2 + x_1^2 + x_2^2 + \lambda_1 x_2 + \lambda_2 (-x_1 + x_2(1 - x_1^2) + u) + \eta(a - x),$$

$$\dot{\lambda}_1 = -\mathcal{H}_{x_1} = -2x_1 + \lambda_2(1 + 2x_1x_2),$$

$$\dot{\lambda}_2 = -\mathcal{H}_{x_2} = -2x_2 - \lambda_1 - \lambda_2(1 - x_1^2) + \eta.$$

The minimum condition $0 = H_u = 2u + \lambda_2$ gives $u = -\lambda_2/2$.
Hence, $x_1 - a + ax_1^2 = -\lambda_2/2$ holds on the boundary.

Differentiation yields

$$\eta = \eta(x, \lambda) = -4a^2x_1 + \lambda_1 + \lambda_2(1 - x_1^2).$$
Van der Pol Oscillator: optimal control

Boundary arc $x_2(t) \equiv a = -0.4$ for $t_1 = 0.887 \leq t \leq t_2 = 2.62$.
Van der Pol Oscillator: multiplier η

Boundary arc $x_2(t) \equiv a = -0.4$ for $t_1 = 0.887 \leq t \leq t_2 = 2.62$.
CASE I : Hamiltonian is regular

CASE I: control u appears "nonlinearly" and $U = \mathbb{R}$

Assume that

- the Hamiltonian is regular, i.e., $H(x, \lambda, u)$ admits a unique minimum with respect to u,
- the strict Legendre condition $H_{uu}(t) > 0$ holds.

Let $q \geq 1$ be the order of the state constraint $s(x) \leq 0$ and consider a boundary arc with $s(x(t)) = 0 \ \forall \ t_1 \leq t \leq t_2$.

Junction conditions

- $q = 1$: The control $u(t)$ and the adjoint variable $\lambda(t)$ are continuous at t_k, $k = 1, 2$.
- $q = 2$: The control $u(t)$ is continuous but the adjoint variable may have jumps according to $\lambda(t_k^+) = \lambda(t_k^-) - \nu_k s_x(t_k)$.
- $q \geq 3$ and q odd: If the control $u(t)$ is piecewise analytic then there are no boundary arcs but only contact points.
Case II: control u appears linearly

Dynamics and Boundary Conditions

$$
\dot{x}(t) = f_1(x(t)) + f_2(x(t)) \cdot u(t), \text{ a.e. } t \in [0, t_f],
$$

$$
x(0) = x_0 \in \mathbb{R}^n, \quad \psi(x(t_f)) = 0 \in \mathbb{R}^k,
$$

Control and State Constraints

$$
\alpha \leq u(t) \leq \beta \quad s(x(t)) \leq 0 \quad \forall \ t \in [0, t_f].
$$

Minimize

$$
J(u, x) = g(x(t_f)) + \int_0^{t_f} (f_{01}(x(t)) + f_{02}(x(t)) \cdot u(t)) \, dt
$$
Case II: Hamiltonian and switching function

Normal Hamiltonian

\[H(x, \lambda, u) = f_{01}(x) + \lambda f_1(x) + \left[f_{02}(x) + \lambda f_2(x) \right] \cdot u. \]

Augmented Hamiltonian

\[\mathcal{H}(x, \lambda, \mu, u) = H(x, \lambda, u) + \mu s(x). \]

Switching function

\[\sigma(x, \lambda) = H_u(x, \lambda, u) = f_{02}(x) + \lambda f_2(x), \quad \sigma(t) = \sigma(x(t), \lambda(t)). \]

On a boundary arc we have

\[s(x(t)) = 0, \quad t_1 \leq t \leq t_2, \]

\[\alpha < u(t) < \beta, \quad t_1 < t < t_2. \]

The minimum condition for the control implies

\[0 = H_u(x(t), \lambda(t), u(t)) = \sigma(t), \quad t_1 + \leq t \leq t_2 -. \]

Formally, the boundary control behaves like a singular control.
Case II: Boundary Control and Junction Theorem

Let q be the order of the state constraint:

$$s^{(q)}(x, u) = \frac{d^q}{dt^q} s(x) = s_1(x) + s_2(x) \cdot u.$$

The boundary control $u = u_b(x)$ is determined from $s^{(q)}(x, u) = 0$ as

$$u = u_b(x) = -\frac{s_1(x)}{s_2(x)}.$$

Junction Theorem for $q = 1$

Let $q = 1$ and let a bang-bang arc be joined with a boundary arc at $t_1 \in (0, T)$.

Claim: If the control is discontinuous at t_1, then the adjoint variable is continuous at t_1.
Model of the immune response

Dynamic model of the immune response:

Optimal control:

Innate Immune Response: state and control variables

State variables:

\[x_1(t) : \text{concentration of pathogen} \]
\[(=\text{concentration of associated antigen}) \]
\[x_2(t) : \text{concentration of plasma cells,} \]
\[\text{which are carriers and producers of antibodies} \]
\[x_3(t) : \text{concentration of antibodies, which kill the pathogen} \]
\[(=\text{concentration of immunoglobulins}) \]
\[x_4(t) : \text{relative characteristic of a damaged organ} \]
\[(0 = \text{healthy}, 1 = \text{dead}) \]

Control variables:

\[u_1(t) : \text{pathogen killer} \]
\[u_2(t) : \text{plasma cell enhancer} \]
\[u_3(t) : \text{antibody enhancer} \]
\[u_4(t) : \text{organ healing factor} \]
Generic dynamical model of the immune response

\[\begin{align*}
\dot{x}_1(t) &= (1 - x_3(t))x_1(t) - u_1(t), \\
\dot{x}_2(t) &= 3A(x_4(t))x_1(t - d)x_3(t - d) - (x_2(t) - 2) + u_2(t), \\
\dot{x}_3(t) &= x_2(t) - (1.5 + 0.5x_1(t))x_3(t) + u_3(t), \\
\dot{x}_4(t) &= x_1(t) - x_4(t) - u_4(t).
\end{align*} \]

Immune deficiency function triggered by target organ damage

\[A(x_4) = \begin{cases}
\cos(\pi x_4), & 0 \leq x_4 \leq 0.5 \\
0, & 0.5 \leq x_4
\end{cases}. \]

For \(0.5 \leq x_4(t) \) the production of plasma cells stops.

State delay \(d \geq 0 \) in variables \(x_1 \) and \(x_3 \)

Initial conditions \((d = 0)\) : \(x_2(0) = 2, \ x_3(0) = 4/3, \ x_4(0) = 0 \)

Case 1 : \(x_1(0) = 1.5 \), decay, requires no therapy (control)
Case 2 : \(x_1(0) = 2.0 \), slower decay, requires no therapy
Case 3 : \(x_1(0) = 3.0 \), diverges without control (lethal case)
Optimal control model: cost functional

State \(x = (x_1, x_2, x_3, x_4) \in \mathbb{R}^4 \),
Control \(u = (u_1, u_2, u_3, u_4) \in \mathbb{R}^4 \)

\(L^2 \)-functional quadratic in control: Stengel et al.

Minimize \(J_2(x, u) = x_1(t_f)^2 + x_4(t_f)^2 \)
\[+ \int_0^{t_f} (x_1^2 + x_4^2 + u_1^2 + u_2^2 + u_3^2 + u_4^2) \, dt \]

\(L^1 \)-functional linear in control

Minimize \(J_1(x, u) = x_1(t_f)^2 + x_4(t_f)^2 \)
\[+ \int_0^{t_f} (x_1^2 + x_4^2 + u_1 + u_2 + u_3 + u_4) \, dt \]

Control constraints: \(0 \leq u_i(t) \leq u_{\text{max}}, \; i = 1, \ldots, 4 \)

Final time: \(t_f = 10 \)
Theory of Optimal Control Problems with Pure State Constraints

Academic Example: order $q = 1$ of the state constraint

Van der Pol Oscillator: order $q = 1$ of the state constraint

Example: Immune Response

Example: Optimal Control of a Model of Climate Change

L^2–functional, $d = 0$: optimal state and control variables

State variables x_1, x_2, x_3, x_4 and optimal controls u_1, u_2, u_3, u_4: second-order sufficient conditions via matrix Riccati equation

Helmut Maurer

Tutorial on Control and State Constrained Optimal Control Problems
Theory of Optimal Control Problems with Pure State Constraints

Academic Example: order $q = 1$ of the state constraint

Van der Pol Oscillator: order $q = 1$

Example: Immune Response

Example: Optimal Control of a Model of Climate Change

L^2–functional, $d = 0$: state constraint $x_4(t) \leq 0.2$

State and control variables for state constraint $x_4(t) \leq 0.2$.

Boundary arc $x_4(t) \equiv 0.2$ for $t_1 = 0.398 \leq t \leq t_2 = 1.35$
Compute multiplier η as function of (x, λ):

$$
\eta(x, \lambda) = \lambda_2 3\pi \sin(\pi x_4) x_1 x_3 - \lambda_1 + 2\lambda_4 - 2x_3 x_1 + 2x_4
$$

Scaled multiplier $0.1 \eta(t)$ and boundary arc $x_4(t) = 0.2$
Theory of Optimal Control Problems with Pure State Constraints

Academic Example: order \(q = 1 \) of the state constraint

Van der Pol Oscillator: order \(q = 1 \) of the state constraint

Example: Immune Response

Example: Optimal Control of a Model of Climate Change

\(L^2 \)-functional, delay \(d > 0 \), constraint \(x_4(t) \leq \alpha \)

Dynamics with state delay \(d > 0 \)

\[
\begin{align*}
\dot{x}_1(t) &= (1 - x_3(t))x_1(t) - u_1(t), \\
\dot{x}_2(t) &= 3 \cos(\pi x_4) x_1(t - d)x_3(t - d) - (x_2(t) - 2) + u_2(t), \\
\dot{x}_3(t) &= x_2(t) - (1.5 + 0.5x_1(t))x_3(t) + u_3(t), \\
\dot{x}_4(t) &= x_1(t) - x_4(t) - u_4(t) \\
x_4(t) &\leq \alpha \leq 0.5
\end{align*}
\]

Initial conditions

\[
\begin{align*}
x_1(t) &= 0, \quad -d \leq t < 0, \quad x_1(0) = 3, \\
x_3(t) &= 4/3, \quad -d \leq t \leq 0, \\
x_2(0) &= 2, \\
x_4(0) &= 0.
\end{align*}
\]
L^2–functional: delay $d = 1$ and $x_4(t) \leq 0.2$

State variables for $d = 0$ and $d = 1$
Theory of Optimal Control Problems with Pure State Constraints

Example: order $q = 1$ of the state constraint

\[L^2 \text{–functional: delay } d = 1 \text{ and } x_4(t) \leq 0.2 \]

Optimal controls for $d = 0$ and $d = 1$
L^2–functional, $d = 1$: multiplier $\eta(t)$ for $x_4(t) \leq 0.2$

Compute multiplier η as function of (x, λ):

$$\eta(x, y, \lambda) = \lambda_2 3\pi \sin(\pi x_4) y_1 y_3 - \lambda_1 + 2\lambda_4 - 2x_3 x_1 + 2x_4$$

Scaled multiplier $0.1 \eta(t)$ and boundary arc $x_4(t) = 0.2$; $\eta(t)$ is discontinuous at $t = d = 1$
Theory of Optimal Control Problems with Pure State Constraints

Academic Example: order $q = 1$ of the state constraint

Example: Van der Pol Oscillator: order $q = 1$ of the state constraint

Example: Immune Response

Example: Optimal Control of a Model of Climate Change

L^1-functional: no delays

Minimize

$$J_1(x, u) = x_1(t_f)^2 + x_4(t_f)^2$$

$$+ \int_0^{t_f} (x_1^2 + x_4^2 + u_1 + u_2 + u_3 + u_4) \, dt$$

Dynamics with delay d and control constraints

\[
\begin{align*}
\dot{x}_1(t) &= (1 - x_3(t))x_1(t) - u_1(t), \\
\dot{x}_2(t) &= 3A(x_4(t))x_1(t)x_3(t) - (x_2(t) - 2) + u_2(t), \\
\dot{x}_3(t) &= x_2(t) - (1.5 + 0.5x_1(t))x_3(t) + u_3(t), \\
\dot{x}_4(t) &= x_1(t) - x_4(t) - u_4(t),
\end{align*}
\]

$$0 \leq u_i(t) \leq u\text{max}, \quad 0 \leq t \leq t_f \quad (i = 1, \ldots, 4)$$
L^1–functional: $u_{\text{max}} = 2$
L^1–functional: non-delayed, time–optimal control for
$x_1(t_f) = x_4(t_f) = 0$, $x_3(t_f) = 4/3$

$u_{\text{max}} = 1$: minimal time $t_f = 2.2151$, singular arc for $u_4(t)$
Dynamical Model of Climate Change

State Variables:

- $K(t)$: Capital (per capita)
- $M(t)$: CO$_2$ concentration in the atmosphere
- $T(t)$: Temperature (Kelvin)

Control Variables

- $C(t)$: Consumption
- $A(t)$: Abatement per capita
Dynamical Model of Climate Change

Production: \[Y = K^{0.18} \cdot D(T - T_o), \quad T_o = 288 \, (K) \]

Damage: \[D(T - T_o) = (0.025 \, (T - T_o)^2 + 1)^{-0.025} \]

Dynamics of per-capita capital \(K \)

\[\dot{K} = Y - C - A - (\delta + n)K, \quad K(0) = K_0. \]
\[(\delta = 0.075, \quad n = 0.03) \]

Emission: \[E = 3.5 \cdot 10^{-4} \cdot K / A \]

Dynamics of \(\text{CO}_2 \) concentration \(M \)

\[\dot{M} = 0.49 \, E - 0.1 \, M, \quad M(0) = M_0. \]
Dynamical Model of Climate Change (continued)

Albedo (non-reflected energy) at temperature T (Kelvin):

$$1 - \alpha_1(T) = k_1 \frac{2}{\pi} \arctan \left(\frac{\pi(T-293)}{2} \right) + k_2,$$

$$k_1 = 5.6 \cdot 10^{-3}, \quad k_2 = 0.1795.$$

Radiative forcing: $5.35 \ln(M)$.

Outgoing radiative flux (Stefan-Boltzmann-law): $\epsilon \sigma T^4$.

Parameters: $\epsilon = 0.95$, $\sigma T = 5.67 \cdot 10^{-8}$,

$$cth = 0.149707, \quad Q = 1367.$$

Dynamics of temperature T with delay $d \geq 0$

$$\dot{T}(t) = cth \cdot \left[\left(1 - \alpha_1(T(t)) \right) \cdot \frac{Q}{4} - \frac{19}{116} \cdot \epsilon \cdot \sigma T \cdot T(t)^4 + 5.35 \cdot \ln(M(t - d)) \right],$$

$$T(0) = T_0.$$
Optimal Control Model of Climate Change

Control constraints for $0 \leq t \leq t_f = 200$:

$$0 < C(t) \leq C_{\text{max}} = 1, \quad 7 \cdot 10^{-4} \leq A(t) \leq 3 \cdot 10^{-3}$$

State constraints of order 2 and 3:

$$M(t) \leq M_{\text{max}}, \quad 0 \leq t \leq t_f = 200,$$

$$T(t) \leq T_{\text{max}}, \quad t_e = 20 \leq t \leq t_f = 200.$$

Maximize consumption

$$J(K, M, T, C, A) = \int_0^{t_f} e^{-(n-\rho)t} \ln(C(t)) \, dt$$
Stationary points of the canonical system

Constant Abatement $A = 1.21 \cdot 10^{-3}$: 3 stationary points

- $T_s := 291.607, \quad M_s = 2.05196, \quad K_s = 1.44720,$
- $T_s := 294.258, \quad M_s = 1.90954, \quad K_s = 1.34726,$
- $T_s := 294.969, \quad M_s = 2.07792, \quad K_s = 1.46606.$

Control variable abatement $A(t)$: Social Optimum

- $T_s := 288.286, \quad M_s = 1.28500, \quad K_s = 1.79647.$
\[T(0) = 291, \ M(0) = 2.0, \ K(0) = 1.4 \]
Theory of Optimal Control Problems with Pure State Constraints

Academic Example: order $q = 1$ of the state constraint

Van der Pol Oscillator: order $q = 1$ of the state constraint

Example: Immune Response

Example: Optimal Control of a Model of Climate Change

$T(0) = 291$, $M(0) = 2.0$, $K(0) = 1.4$

$T(t_f) = 291$, $M(t_f) = 1.8$, $K(t_f) = 1.4$
\(T(0) = 291, \ M(0) = 2.0, \ K(0) = 1.4 \)
\(T(t_f) = 291, \ M(t_f) = 1.8, \ K(t) \geq 1.2, \ 0.85 \leq C(t) \leq 1 \)
\[d = 10 : T(0) = 291, \ M(0) = 1.8, \ K(0) = 1.4 \]
\[T(t_f) = 291, \ M(t_f) = 1.8, \ K(t) = 1.4 \]
$T(0) = 294.5, \ M(0) = 2.2, \ K(0) = 1.4$

$T(t_f) = 291, \ M(t_f) = 1.8, \ K(t) = 1.4, \ 0.85 \leq C(t) \leq 1$
\[d = 10 : \quad T(0) = 294.5, \quad M(0) = 2.2, \quad K(0) = 1.4 \]
\[T(t_f) = 291, \quad K(t) = 1.4, \quad 0.85 \leq C(t) \leq 1 \]

State constraint of order two: \(M(t) \leq 1.9 \) for \(30 \leq t \leq t_f = 200 \)
State constraint of order two: \(M(t) \leq 1.9 \) for \(30 \leq t \leq t_f = 200 \)