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Abstract

This work deals with the numerical simulation, by means of a finite element method,
of the time-harmonic propagation of acoustic waves in a moving fluid, using the
Galbrun equation instead of the classical linearized Euler equations. This work
extends a previous study in the case of a uniform flow to the case of a shear flow.
The additional difficulty comes from the interaction between the propagation of
acoustic waves and the convection of vortices by the fluid. We have developed a
numerical method based on the regularization of the equation which takes these
two phenomena into account. Since it leads to a partially full matrix, we use an
iterative algorithm to solve the linear system.
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1 Introduction

Understanding of the propagation of sound in a moving fluid is of particular
importance in several industries. A large part of the efforts made in that do-
main is devoted to the computation of the noise generated and radiated by
engines. In this work, we are interested in the simulation of acoustic propa-
gation in the presence of a shear flow, using the so-called Galbrun equation
[1].

This peculiar model assumes small perturbations of an isentropic flow of a
perfect fluid and is based on a Lagrangian-Eulerian description of the per-
turbations, in the sense that Lagrangian perturbations of the quantities are
expressed in terms of Eulerian variables with respect to the mean flow. It
consists of a linear partial differential equation of second order in time and
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space on the Lagrangian displacement perturbation, which is amenable to
variational methods. However, the numerical solution of Galbrun’s equation
by standard (i.e., nodal) finite element methods is subject to difficulties quite
similar to those observed for Maxwell’s equations in electromagnetism.

In [2], we proposed a regularized formulation of the time-harmonic Galbrun’s
equation in presence of a uniform mean flow that allowed the use of nodal
finite elements for the discretization of the problem. The application of this
method to the case of a shear mean flow is investigated here. Following [2] we
consider an artificial problem set in a bounded domain. To deal with more re-
alistic situations, the regularization technique could be coupled with perfectly
matched layers (PML) as done in [3].

The outline is the following. The problem and the framework used to solve
it are presented in section 2. Section 3 is devoted to the mathematical study
of a weak formulation of this problem. Finally, section 4 is concerned with
numerical applications.

2 Presentation of the problem

2.1 Physical setting

We consider an infinite two-dimensional rigid duct of height `, set in the x1x2

plane and filled with a compressible fluid. We are interested in the linear
propagation of waves in the presence of a subsonic shear mean flow of velocity
v0(x) = v(x2) e1, e1 being the unit vector in the x1 direction, and assuming
a time-harmonic dependence of the form exp(−iωt), ω > 0 being the pul-
sation. In terms of the perturbation of the Lagrangian displacement u, this
problem is modeled by the following equation and boundary condition: find a
displacement u satisfying

D2u−∇ (div u) = f in R× [0, `], (1)

u · n = 0 for x2 = 0 and x2 = `, (2)

and an adequate radiation condition at infinity, n being the unit outward
normal to the duct walls. Equation (1) is the Galbrun equation, in which the
letter D stands for the material derivative in the mean flow with time-harmonic
dependence, that is Du = −ik u + M ∂x1u, with k = ω/c0 the acoustic wave
number and M = v/c0 the Mach number, c0 being the sound velocity. The
right hand side term f represents an acoustic source placed in the duct. Note
that we restrict ourselves to a subsonic shear flow whose Mach number profile
M(x2) is a nonvanishing C1([0, `]) function. The previous study dealt with
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the uniform flow case which corresponds to a constant profile (i.e., M ′ ≡ 0).
Considering a less regular or vanishing profile would bring up difficulties which
are beyond the scope of this paper.

As solving the problem in an unbounded domain necessitates, as previously
mentioned, the determination of a radiation condition (see [3] in the uniform
flow case) and since this article focuses on the finite element method used
to compute a solution to Galbrun’s equation, we consider from now on an
artificial problem set in a bounded portion of the duct of length L. In what
follows, Ω denotes the domain [0, L]× [0, `].
Boundary conditions have now to be prescribed on the vertical boundaries
Σ− = {0} × [0, `] and Σ+ = {L} × [0, `]. By analogy with the no flow case,
we impose the value of u ·n. Notice that, by linearity of equation (1), we can
choose this boundary condition to be a homogeneous one, and we now have

D2u−∇ (div u) = f in Ω, (3)

u · n = 0 on ∂Ω, (4)

instead of previous equations (1) and (2). However, this last problem is not
well-posed. We will indeed see in subsection 2.2.2 that, due to the presence of
flow, a supplementary boundary condition is required on the vertical bound-
aries Σ− and Σ+.

2.2 Variational framework

When considering the discretization of Galbrun’s equation (3) by a finite el-
ement method, one is confronted with the choice of a variational formulation
of the problem, which will, in turn, lead to the use of suitable finite element
spaces. As for the second-order form of Maxwell’s equations appearing in com-
putational electromagnetism, two main strategies can be considered, both of
which are presented on a model problem of acoustic propagation in a fluid
at rest. In the following, it is assumed that the reader is familiar with such
spaces as L2(Ω), H(curl; Ω), H(div; Ω) and H1(Ω), and their respective sub-
spaces H0(div; Ω) and H1

0 (Ω).

2.2.1 The no mean flow case

When the fluid is initially at rest, problem (3)-(4) becomes: find u such that

−k2 u−∇ (div u) = f in Ω, (5)

u · n = 0 on ∂Ω. (6)
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This type of problem arises in several acoustic fluid-structure interaction prob-
lems of interest (see [4] for instance.) For the sake of simplicity, we furthermore
assume that the vector field f is such that curl f = 0 in Ω, which amounts
to saying that the source only generates acoustic (i.e., irrotational) perturba-
tions. Note that, as the wave number k is non zero, the displacement field u
satisfies the following constraint

curl u = 0 in Ω, (7)

which is simply a consequence of equation (5).

Since equation (5) does not exhibit ellipticity properties, proper care has to be
taken when writing a weak formulation of problem (5)-(6) and two different
approaches can be followed.

First, dropping constraint (7), which may be difficult to impose on the numer-
ical approximation, leads to a straightforward variational formulation in the
Hilbert space U = H0(div; Ω): find u in U such that

∫

Ω

(
div u div v − k2 u · v

)
dx = (f ,v)L2(Ω)2 , ∀v ∈ U. (8)

However, attempts to solve this problem by Lagrange finite element meth-
ods (each field component being represented on nodal basis functions) have
proved to be ill-suited, the computed solutions being affected by the occurence
of “non-physical” modes, related to the fact that the space U isn’t compactly
imbedded in L2(Ω)2. Nevertheless, the above curl-free constraint can be en-
forced by means of a Lagrange multiplier. This leads to the following mixed
formulation of problem (5)-(6): find (u, p) in U ×H1

0 (Ω) such that

∫

Ω

(
div u div v − k2 u · v

)
dx +

∫

Ω
curl p · v dx = (f , v)L2(Ω)2 , ∀v ∈ U,

∫

Ω
u · curl q dx = 0, ∀q ∈ H1

0 (Ω),

(9)
the unknown p being the aforementionned multiplier. Convergence of approx-
imations of problem (9) requires the use of so-called mixed finite elements
(Raviart-Thomas elements for instance), which respect some necessary fea-
tures such as the inf-sup condition and discrete compactness property [5].
Additionally, one sees that a solution to (8) is a solution to (9) with p = 0.
As a consequence, if an adequate discretization is used, the approximated
multiplier can be regarded as a “hidden” variable and thus dropped.

Another possibility consists in modifying the weak problem (8) in order to
make it account directly for the constraint (7). In our case, this is done by
adding a (curl ·, curl ·)L2(Ω) product to the formulation, which yields the more
general regularized or augmented, with respect to (8), variational problem: find
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u ∈ V such that

∫

Ω

(
div u div v + s curl u curl v − k2 u · v

)
dx = (f , v)L2(Ω)2 , ∀v ∈ V, (10)

where V is the Hilbert space V = H0(div; Ω) ∩H(curl; Ω), equipped with the
graph norm, and s is a given positive real number. The space V being com-
pactly imbedded into L2(Ω)2 and the new sesquilinear form having coercivity
properties on it, one can classicaly make use of the Riesz-Fredholm theory to
prove existence and uniqueness of a solution to problem (10).
What is more, when the domain Ω is convex or the boundary ∂Ω is smooth,
observe that we have V = W , where the space

W = H0(div; Ω) ∩H1(Ω)2

is equipped with the H1(Ω)2 norm. From the point of view of the numerical
approximation, the fact that V is a subspace of H1(Ω)2 in this case allows
a suitable and convenient discretization of the problem by Lagrange finite
elements.

2.2.2 The shear flow case

The presence of a flow complicates considerably the above analysis, as the
convective terms appearing in the equation raise difficulties on several levels.

First, taking the curl of equation (3) leads to an ordinary linear differential
equation on curl u instead of the explicit constraint (7). The main consequence
of this change is that, even if the source f is irrotational, the displacement field
u is not curl-free, a notable exception being if the mean flow is uniform [2].
Also related is the fact that mixed finite elements adapted to this configuration
are to be found yet in the literature. We nevertheless show in the next section
that the regularization technique can be nontrivially extended to successfully
solve the problem.

Second, the functional framework is not completely clear. For the convective
terms to have a sense in L2(Ω)2, the variational problem needs to be set a priori
in a space smaller than V . We deliberately choose to work in the subspace W
of H1(Ω)2, which will suitably fit our needs for the regularization process.

Then, any solution to (3)-(4) satisfies the following weak formulation of the
problem: find u in W such that, for any v in W ,

∫

Ω

(
div u div v −M2 ∂x1u · ∂x1v − 2ikM ∂x1u · v − k2 u · v

)
dx

+
〈
M2 ∂x1u (n · e1),v

〉
H−1/2(∂Ω),H1/2(∂Ω)

= (f ,v)L2(Ω)2 .
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Notice that a supplementary boundary condition is needed in order to prop-
erly deal with the surface term in the left-hand side. Among several possible
choices, we select the assumption that curl u is known on the boundary ∂Ω.
We consequently add the boundary conditions

curl u = ψ± on Σ±, (11)

where ψ+ (resp. ψ−) belongs to L2(Σ+) (resp. L2(Σ−)), to the set of equations
(3)-(4) and close the problem to solve. We will see in subsection 3.1 that this
last condition will prove useful in obtaining an explicit constraint for the scalar
field curl u.

Last, it is also obvious that the above sesquilinear form has no coerciveness
properties on H1(Ω)2, so that an augmented (or regularized) form of the vari-
ational problem is clearly required. This is the purpose of the next section.

3 Study of a regularized problem

In the next subsection, we derive from Galbrun’s equation an explicit con-
straint for curl u analogous to identity (7) and preliminary results are given.
We then write a weak regularized problem, whose well-posedness and equiva-
lence with the original problem are proved in subsections 3.2 and 3.3 respec-
tively.

3.1 Derivation of a constraint for curl u

Assume that the source f belongs to H(curl; Ω) and formally apply the curl
operator to Galbrun’s equation (3). The Mach number M being a function of
the x2 variable, we obtain

D2(curl u) = 2M ′ D (∂x1u1) + curl f on Ω. (12)

For any fixed value of x2 in [0, `], the above equation is simply an ordinary,
linear, constant coefficient differential equation with respect to the x1 variable.
Denoting ψ = curl u and considering the following problem

−k2 ψ − 2ikM ∂x1ψ + M2 ∂2
x1

ψ = g in Ω,

ψ = ψ0 on Σ±,
(13)
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where g and ψ0 are given data, the solution to (12) can be computed easily if
we conveniently choose the following decomposition

ψ = Au + ψf , (14)

where the field ψf denotes the solution to problem (13) with g = curl f and
ψ0 = ψ± on Σ±, and Au is the solution to (13) with g = 2M ′ D (∂x1u1)
and vanishing on the boundaries Σ±. Note that identity (14) replaces the
simple constraint (7) in the presence of a shear flow is present. The explicit
determination of the field ψf is tackled in Appendix A and we now state two
results on the field Au that will be needed for the subsequent study of the
regularized problem.

Lemma 1 For all u in W and (x1, x2) in Ω, we have

Au(x1, x2) =
2ikM ′(x2)

M2(x2)

L− x1

L

∫ x1

0
u1(z, x2) e

i
k(x1−z)

M(x2) dz

−2ikM ′(x2)

M2(x2)

x1

L

∫ L

x1

u1(z, x2) e
i
k(x1−z)

M(x2) dz

+
2M ′(x2)

M(x2)
u1(x1, x2).

(15)

The proof of this lemma is given in Appendix A.

Lemma 2 The operator A is continuous from W to H1(Ω).

Proof. We need to prove the existence of a positive constant C such that

‖Au‖H1(Ω) ≤ C ‖u‖H1(Ω)2 , ∀u ∈ W.

Owing to the regularity of the Mach number profile, one can easily see that
the term [2M ′(x2)/M(x2)] u1(x1, x2) in expression (15) is continuous from W
to H1(Ω). The remaining terms being of the generic form

ζ(x1, x2) = β(x2)
∫ L

0
γ(x1) u1(z, x2) eik(x1−z)/M(x2) dz,

where β(x2) = M ′(x2)/M
2(x2) and γ denotes a polynomial function, the use

of the Cauchy-Schwarz inequality allows to show the existence of a strictly
positive constant C ′ such that

‖ζ‖H1(Ω) ≤ C ′ ‖u1‖H1(Ω) ≤ C ′ ‖u‖H1(Ω)2 , ∀u ∈ W.

¤
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3.2 Well-posedness of the regularized problem

A regularized variational formulation of the problem is given by: find u ∈ W
such that

as(u,v) = l(v), ∀v ∈ W, (16)

where as(·, ·) denotes the sesquilinear form defined on W ×W by

as(u,v) =
∫

Ω

(
div u div v + s curl u curl v −M2 ∂x1u · ∂x1v

)
dx

−
∫

Ω

(
k2u · v + 2ikM ∂x1u · v + sAu curl v

)
dx,

(17)

with s a given strictly positive constant, and l(·) is an antilinear form on W
given by

l(v) =
∫

Ω
(f · v + s ψf curl v) dx−

∫

Σ±
M2 ψ±v2(n · e1) dσ. (18)

We have the

Theorem 1 Variational problem (16) can be written as a Fredholm equation
if s ≥ s0, where s0 = max

x2∈[0,`]
M2(x2).

Proof. We prove that the sesquilinear form as(·, ·) defines, by means of the
Riesz representation theorem, an operator on W which is the sum of an auto-
morphism and a compact operator. To this end, consider the operators B and
C defined on W by

(Bu,v)W =
∫

Ω

(
u · v + div u div v + s curl u curl v −M2 ∂x1u · ∂x1v

)
dx,

and (Cu,v)W =
∫

Ω

(
−(k2 + 1) u · v − 2ikM∂x1u · v − sAu curl v

)
dx,

where (·, ·)W denotes the natural scalar product in W . Due to the remarkable
identity (see [6])

∫

Ω

(
|div v|2 + |curl v|2

)
dx =

∫

Ω
|∇v|2 dx, ∀v ∈ W,

there exists a strictly positive constant α such that

(Bu,u)W =
∫

Ω

(
|u|2 + (1− s0) |div u|2 + (s− s0) |curl u|2 + s0 |∇u|2 −M2 |∂x1u|2

)
dx

≥α ‖u‖2
W ,

if s > s0, since M2(x2) ≤ s0 < 1 for all x2 ∈ [0, `].
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Additionally, the operator C is compact on W . Indeed, introducing the oper-
ator K from W to W , such that

(Ku, v)W = (Au, curl v)L2(Ω), ∀u ∈ W, ∀v ∈ W,

we just need to prove that K is compact, the two other terms defining C being
obviously compact. Taking v = Ku and using the Cauchy-Schwarz inequality,
we get

||Ku||W ≤ ||Au||L2(Ω) , ∀u ∈ W.

We then conclude by virtue of the compact embedding of H1(Ω) in L2(Ω) and
the continuity of the operator A from W to H1(Ω). ¤

Owing to the Fredholm alternative, showing uniqueness of a solution to prob-
lem (16) gives its existence for any right-hand side F , and conversely.

3.3 Equivalence between the original and regularized problems

We end this study by proving that regularized variational problem (16) implies
the original strong problem (3)-(4)-(11). Since it is quite obvious that any
solution u to (16) is also a solution to: find u such that





D2u−∇(div u) + s curl (curl u−Au− ψf ) = f in Ω,

u · n = 0 on ∂Ω,

curl u = Au + ψf on ∂Ω,

(19)

we simply have to prove that curl u = Au + ψf in Ω. Following [2], we take
test functions in the form v = curlϕ, with ϕ a function of H2(Ω) ∩ H1

0 (Ω),
and obtain that curl u−Au− ψf is orthogonal to the range of the operator
Hk,M,s, defined by

Hk,M,s = M2 ∂2
x1
− 2ikM ∂x1 − k2 I − s ∆,

and with domain D(Hk,M,s) = H2(Ω) ∩ H1
0 (Ω). Since Hk,M,s is a selfadjoint

operator with domain dense in L2(Ω), curl u−Au−ψf belongs to the kernel
of this operator. Using compactness arguments, we then prove that, for fixed
wave number k and profile M , there exists s∗ such that for all s > s∗ the
kernel of Hk,M,s is {0} (for a uniform flow, the value of s∗ can be determined
analytically [2].) Note that this result is valid only if Ω is convex or if ∂Ω
is smooth. Indeed, due to singularities, the operator Hk,M,s is not selfadjoint
and its kernel is never reduced to {0} (see [7] for instance.) In particular, our
approach cannot be extended to the case in which a thin plate is placed in the
flow.
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4 Numerical applications

4.1 The technical difficulty

A direct consequence of Theorem 1 is that a Lagrange finite element approxi-
mation of problem (16) will converge. However, the main challenge lies in the
implementation of the quantity ψ = Au + ψf .
On the one hand, the field ψf is computed a priori and without difficulty from
the data, using the explicit expression (A.3). On the other hand, the field Au
has to be split in two local and nonlocal contributions,

Au = ALocu +ANLocu,

with ALocu(x1, x2) = 2M ′(x2)
M(x2)

u1(x1, x2), the difficulty being the computation
of the nonlocal part ANLocu with a finite element code. Indeed, we need to
evaluate integrals over streamlines of the flow which are not necessarily lines
of the finite element mesh. Even when working with a structured mesh, the
implementation of this term remains difficult and costly, as each integral cou-
ples degrees of freedom which do not belong to the same (or even adjacent)
finite element(s).

4.2 Implementation

Let Qh be a quadrangulation of domain Ω such that Ω = ∪Q∈Qh
Q, h being the

discretization step. We denote by Vp
h the finite-dimensional space of continuous

functions which are polynomials of degree p over Qh, i.e.,

Vp
h =

{
vh ∈ C0(Ω) | vh|Q ∈ Pp, ∀Q ∈ Qh

}
,

its dimension being Np
h . This space is obviously H1(Ω) conforming, and we

introduce V p
h = (Vp

h)2. We denote the basis functions of Vp
h by (lj)j=1,...,Np

h

and by (wj
α)

j=1,...,Np
h

α=1,2 the ones of V p
h , defined by wj

α = lj eα. An approximate
solution uh to problem (16) in V p

h is then written as

uh(x) =
∑

α,j

uhα(xj)wj
α(x),

and the associated matricial problem is AU = L, where (Aα,γ)
i,j = as(w

j
α,wi

γ),

(Lγ)
i = l(wi

γ), as and l being defined in (17) and (18) respectively, and

U =




[
(uh1)

i
]
i∈Ip

h[
(uh2)

i
]
i∈Ip

h


, with Ip

h = {1, 2, . . . , Np
h}.
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As previously stated, from a computational point of view, the difficulty lies in
the numerical evaluation of coefficients

(Cα,γ)
i,j = s

∫

Ω
ANLocw

j
α(x) curl wi

γ(x) dx.

By interpolatingANLocw
j
α, we have (Cα,γ)

i,j ' s
∑

mANLocw
j
α(xm)

∫
Ω lm(x) curl wi

γ(x) dx.

Moreover, setting

(Iα)m,j =ANLocw
j
α(xm),

=
2ikM ′(xm

2 )

M2(xm
2 )L

[
(L− xm

1 )
∫ xm

1

0
δ1αlj(z, xm

2 )e
ik(xm

1 −z)

M(xm
2

) dz,

− xm
1

∫ L

xm
1

δ1αlj(z, xm
2 )e

ik(xm
1 −z)

M(xm
2

) dz

]
,

we can compute exactly the matrix I: it simply consists of evaluating integrals

of the form
∫

zq e
− ik z

M(x2) dz, with q = 0, . . . , p. This matrix is partially full
since all degrees of freedom having the same x2-coordinate are linked, and, as
a consequence, the matrix C = P× I, with (Pα)i,j =

∫
Ω lj(x) curl wi

α(x) dx, is
also partially full.

4.3 Solution of the linear system

The matrix C being partially full, an iterative method is used for the solution
of the linear system AU = L in order to avoid the inversion of the matrix
A = B+ C. We use the following iterative scheme

BUn+1 = CUn + L.

For a uniform flow (i.e., when M ′ ≡ 0), the nonlocal term vanishes and the
solution is obtained after a single iteration. In the shear flow case, we con-
jecture that the scheme converges when maxx2∈[0,`] (M

′/M2) is small, if k
does not belong to the set of the frequencies where B cannot be inverted.
Indeed, we have ‖B−1‖ ≤ Ck,M,s < +∞, with Ck,M,s a constant, and we can
prove that ‖C‖ ≤ 4ksL maxx2∈[0,`] (M

′/M2), hence ‖B−1C‖ ≤ ‖B−1‖‖C‖ ≤
4ksL Ck,M,s maxx2∈[0,`] (M

′/M2). This allows to understand why, in practice,
when M varies slowly enough, ‖B−1C‖ ≤ 1 and the iterative method works.
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4.4 Numerical results

We validate the method with simulations of the propagation of guided modes,
which are solutions of the form u(x1, x2) = w(x2) eiβx1 , β being a complex
number, to the homogeneous version of equation (1). Values of the axial wave
number β and of the vector function w are obtained semianalytically by com-
puting solutions of the Pridmore-Brown equation by a Chebishev method, as
done in [8], for the parabolic profile of a subsonic Mach number shown in
Figure 1, with k = 6 and ` = 1.

-0.2 0 0.2 0.4 0.6 0.8 1
0

0.5

1

Figure 1. Profile of the Mach number M(x2) = −0.3x2
2 + 0.6x2 + 0.5, x2 ∈ [0, 1].

The obtained values of β are plotted in Figure 2. Axial wave numbers such that
Re(β) ∈ [k/Mmax, k/Mmin] = [7.5, 12] and Im(β) = 0 are associated with the
so-called hydrodynamic modes. The remaining values are associated with the
acoustic modes. Among these modes, we can again distinguish the propagative
ones, which have a strictly real axial wave number, and the evanescent ones.

−30 −25 −20 −15 −10 −5 0 5 10 15
−50

−40

−30

−20

−10

0

10

20

30

40

50

Re(β)

Im
(β

)

0U IU IIU 0DIID ID

Figure 2. Values of β in complex plane.

In the simulations, we consider two different combinations of modes in a two
unit long piece of duct. The first combination, labelled A, combines two up-
stream modes (IU and IIU in Figure 2), while the second, labelled B, combines
two downstream modes (0D and IID in Figure 2). These conbinations are im-
posed via a non-homogeneous boundary condition on the vertical boundaries
for the normal displacement u · n and curl u. The iterative method is initial-
ized with a null displacement field. All the simulations were done with the
finite element library mélina [9].

The computed displacement field and associated curl field are shown in Figures
3 and 4. The convective effect of the flow is clearly seen: the wavelengths of
the upstream waves are shorter than those of the downstream ones. We also
observe that the curl field ψ is localized where the shear of the flow is important
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(a) u1 (b) u2 (c) ψ

Figure 3. Isovalues of the real part of the components of the computed displacement
field and vorticity (combination A).

(a) u1 (b) u2 (c) ψ

Figure 4. Isovalues of the real part of the components of the computed displacement
field and vorticity (combination B).

(the function |M ′(x2)| being maximum in x2 = 0.) This is in accordance with
expression (15).

Figure 5 plots the relative error in L2(Ω)2 (resp. L2(Ω)) norm between the
computed and reference solutions (the reference solution being obtained by
the solution of Pridmore-Brown’s equation) for the displacement field (resp.
ψ) versus the number of iterations. We notice that seven iterations have been
necessary to reach the stop condition, that the final error on the displacement
is under one percent and that the error on u is decreasing faster than the one
on ψ.

 0.001

 0.01

 0.1

 1

 10

 0  1  2  3  4  5  6  7

’L2error:u’
’L2error:psi’

Figure 5. Behavior of the logarithm of the relative L2 error in u and ψ.

Acknowledgment

This work has benefited the support of EADS (European Aeronautic Defence
Space) through a fellowship provided to one of the author (E.-M. D.), in the
frame of he PhD grant.

13



A Solution of differential equation (12)

A.1 The Green function

In order to solve problem (13), we introduce its associated Green function Gx2

(x2 ∈ [0, `] being here a fixed parameter), which satisfies, for all z in [0, L],
(
M(x2)

2 ∂2
x1
− 2ikM(x2) ∂x1 − k2

)
Gx2(x1, z) = δ(x1−z), ∀x1 ∈ [0, L], (A.1)

where δ(x1 − z) is the Dirac delta function at point z, along with the homo-
geneous Dirichlet boundary conditions

Gx2(0, z) = Gx2(L, z) = 0, ∀z ∈ [0, L]. (A.2)

The solution to problem (A.1)-(A.2) is the following:

Gx2(x1, z) =





−x1(L− z)

M2(x2)L
e
i
k(x1−z)

M(x2) if x1 ≤ z,

−z(L− x1)

M2(x2)L
e
i
k(x1−z)

M(x2) if x1 > z.

A.2 The field ψf

Theorem 2 The solution to problem (13) with g = curl f and φ0 = ψ± on
Σ±, denoted ψf , is given by

ψf (x1, x2) =
∫ L

0
Gx2(x1, z) curl f(z, x2) dz + (a(x2) + b(x2)x1) e

i
kx1

M(x2) , (A.3)

where a(x2) = ψ−(x2) and b(x1) = ψ+(x2) e
−i kL

M(x2)−ψ−(x2)
L

.

Moreover, it belongs to L2(Ω) and we have

‖ψf‖2
L2(Ω) ≤ C

(
‖curl f‖2

L2(Ω) + ‖ψ−‖2
L2([0,`]) + ‖ψ+‖2

L2([0,`])

)
,

where C is a strictly positive constant.

Proof. Obtaining expression (A.3) is straightforward. Concerning the inequal-
ity, we use the upper bound L for the quantities |x1|, |z|, |L− x1| and |L− z|
and deduce easily that |Gx2(x1, z)| ≤ L/M2(x2), ∀(x1, x2) ∈ Ω and ∀z ∈ [0, L].
Therefore, for all (x1, x2) in Ω, we have

|ψf (x1, x2)| ≤ L

M2(x2)

∫ L

0
|curl f(z, x2)| dz + |ψ−(x2)|+ |ψ+(x2)|.

14



The estimation is then easily deduced from a Cauchy-Schwarz inequality. ¤

A.3 The field Au

Recall that the field Au is the solution to problem (13) with g = 2M ′ D (∂x1u1)
and vanishing on Σ±. Using the Green function, we get

Au(x1, x2) = 2M ′(x2)
∫ L

0
Gx2(x1, z)D (∂zu1) (z, x2) dz, ∀(x1, x2) ∈ Ω. (A.4)

Still, a more useful expression is given in Lemma 1, which is proved below.

Proof. (of Lemma 1) Integrating by parts in identity (A.4), we get

Au(x1, x2) = −2M ′(x2)
∫ L

0
DGx2(x1, z)∂zu1(z, x2) dz, ∀(x1, x2) ∈ Ω,

where D = [ik + M(x2)∂z], the boundary terms vanish due to (A.2). Since we
have

DGx2(x1, z) =





x1

M(x2)L
e
i
k(x1−z)

M(x2) if x1 ≤ z,

−(L− x1)

M(x2)L
e
i
k(x1−z)

M(x2) if x1 > z,

we finally obtain

Au(x1, x2) =
2M ′(x2)

M(x2)L

[
(L− x1)

∫ x1

0
∂zu1(z, x2) e

i
k(x1−z)

M(x2) dz

−x1

∫ L

x1

∂zu1(z, x2) e
i
k(x1−z)

M(x2) dz

]
.

Expression (15) then stems from a last integration by parts and the fact that
u1(z, x2) = 0 for z = 0 and z = L, ∀x2 ∈ [0, `]. ¤
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