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Abstract: We present in this chapter a review of some recent research work about a new
approach to the numerical simulation of time harmonic wave propagation in in�nite peri-
odic media including a local perturbation. The main dif�culty lies in the reduction of the
effective numerical computations to a bounded region enclosing the perturbation. Our ob-
jective is to extend the approach by Dirichlet-to-Neumann (DtN) operators, well known in
the case of homogeneous media (as non local transparent boundary conditions). The new
dif�culty is that this DtN operator can no longer be determined explicitly and has to be
computed numerically. We consider successively the case ofa periodic waveguide and the
more complicated case of the whole space. We show that the DtNoperator can be char-
acterized through the solution of local PDE cell problems, the use of the Floquet-Bloch
transform and the solution of operator-valued quadratic orlinear equations. In our text, we
shall outline the main ideas without going into the rigorousmathematical details. The non
standard aspects of this procedure will be emphasized and numerical results demonstrating
the ef�ciency of the method will be presented.

1 Introduction

Periodic media play a major role in applications, in
particular in optics for micro and nano-technology
[18, 20, 23, 28]. From the point of view of ap-
plications, one of the main interesting features is
the possibility offered by such media of selecting
ranges of frequencies for which waves can or
cannot propagate. Mathematically, this property is
linked to the gap structure of the spectrum of the
underlying differential operator appearing in the
model. For a complete, mathematically oriented
presentation, we refer the reader to [23, 24]. There
is a need for ef�cient numerical methods for
computing the propagation of waves inside such
structures. In real applications, the media are not
perfectly periodic but differ from periodic media
only in bounded regions (which are small with
respect to the total size of the propagation domain).
In this case, a natural idea is to reduce the pure
numerical computations to these regions and to
try to take advantage of the periodic structure of
the problem outside: this is particularly of interest
when the periodic regions contain a large number
of periodicity cells.

In the case where the unperturbed medium is
homogeneous (in some sense, a periodic medium
with an arbitrarily small period), this is a very
old problematic. Various methods can be used to

restrict the computation around the perturbation.
A �rst class of methods consists in applying an
arti�cial boundary condition which is transparent or
approximately transparent. Let us cite :

(i) the coupling techniques between volumic
methods and integral representations or inte-
gral equation techniques [19, 25, 14, 17]

(ii) the DtN approaches which consists in comput-
ing exactly the Dirichlet-to-Neumann operator
associated to the exterior medium, provided
that the geometry of the boundary is properly
chosen (typically a circle in 2D)

(iii) the local radiation conditions at �nite distance
[8, 2], constructed as a local approximation of
the exact non local condition at various orders
with respect to a small parameter, typically the
inverse of the frequency.

Methods (i) and (ii) are exact (up to numerical
approximation). The method (iiii) is approximate
and its accuracy improves where the order of the
condition increases or the arti�cial boundary goes
to in�nity. However, none of these methods can
be applied or extended directly to general exterior
periodic media because they use the homogeneous
nature of the exterior medium (explicit formulas are
used for the solution of the exterior problem in (i),
(ii) and (iii), the knowledge of the Green function is
used in case (ii) and separation of variables is used



in case (iii) ).

The second approach consists in surrounding
the computational domain by an absorbing layer in
which the PML technique [3] is applied. Physically
the method can be interpreted as letting an incident
wave from the computational domain enters the
layer without re�exion and absorbs the wave
inside the layer preventing it to come back in
the computational domain. This principle is not
adapted a priori to periodic media for which a wave
leaving the computational domain will interact
with heterogeneities of the medium up to in�nity.
That is why the standard PML technique cannot
work in this case (see however the pole condition
techniques that can be seen as a generalization of
the PML method in the case of non-homogeneous
media [15, 16]).

It seems that there are very few works in the
same spirit in the mathematical literature for the
case of periodic perturbed media. A problem
similar that have some similarities with the one we
consider in this paper is the numerical computation
of localized modes (non trivial solutions of the
propagation model in the absence of any source
term) that may appear for speci�c frequencies
due to the presence of a local perturbation of
the periodic media (see [9, 10, 11] for existence
results). The supercell method analyzed [29] has
similarities with the radiation condition at �nite
distance (i) : it consists in making computations in a
bounded domain of large size, the resulting solution
converging to the true solution when the size goes
to in�nity. Note however that in this case as the
localized modes are exponentially decreasing, this
convergence is exponentially fast with respect to
the size of the truncated domain.

The notion of DtN maps already appears for
instance, in the works of T. Abboud [1] for the
diffraction problem by periodic gratings or of J.
Tausch [30] for periodic open waveguides. How-
ever in these two cases the DtN map is used to deal
with the unboundedness of the propagation medium
in the direction(s) transverse to the periodicity
direction(s).

In a �rst paper [21], we treated the case of lo-
cally perturbed periodic waveguide: typically the
unperturbed propagation medium is bounded in one
direction and periodic in the other. We proposed a
numerical method for determining DtN operators

by solving local cell problems an operator valued
stationary Ricatti equation. In a second paper [13],
we proposed an extension of the above work to the
case where the unperturbed media is periodic in
the two directions. We presented the conceptual
aspects of the method for the construction of the
DtN operator and we exposed the main theoretical
issues and results.

This chapter is devoted to a general presenta-
tion of the method of [13, 12] adapted to the case
of a RtR (for Robin-to-Robin) boundary condition:
instead of relating the Dirichlet and the Neumann
traces of the solution, we want to relate two
different Robin traces of the solution, typically

¶u
¶n

� �Zu;

whereZ is a non-zero impedance, that are related
through a transparent RtR operator. Such Robin
traces naturally appear in non overlapping domain
decomposition methods for solving the Helmholtz
equation [4, 5, 6]. They are also used in the context
of periodic media in [7]. From the numerical point
of view, one of the interest of RtR operators is that,
contrary to DtN operators for instance, they are
bounded operators with bounded inverse and their
discretization leads to well-conditioned matrices.

For the sake of conciseness of the presentation,
we shall restrict ourselves to the exposition of the
main ideas and results and to illustrate the method
through numerical results. On the other hand, for
the sake of rigor, we have chosen to make precise
the functional framework inside which the argu-
ments we shall develop can be completely justi�ed.
However, most theorems will be stated without
proofs. The reader can �nd these proofs together
additional details in [21, 13, 12]. Moreover, the
functional analysis makes the presentaton of the
method involved but it can be omitted at the �rst
reading.

Let us also mention that, in order to avoid math-
ematical dif�culties, we consider the case where
the propagation medium is slightly absorbing, the
absorption being quanti�ed by a small positive
parametere > 0 (see section 2). The challenging
question of studying the limit case whene tends
to 0 (i.e. the limiting absorption principle) is still
an open question to our knowledge. However
the method that we present here can be formally
extended to non absorbing media by using the



heuristics proposed in [21, 12] for the case of
periodic waveguides. Another advantage of RtR
conditions is that they seem better adapted to the
development of a numerical limiting absorption
principle, which is the object of a future work.

2 Model problem

The model problem that we consider is the propaga-
tion of a time harmonic scalar wave in a 2D periodic
medium,W= R2, with a local perturbation. More
precisely, we shall assume that the geometry as well
as the material properties of the plane arex andy�
periodic except in a bounded region (see Figure (1)
for an example). Speci�cally, we want to solve the

Figure (1): Example of domain of propagationW :
the functionr p takes different values in the white,
the light gray and the gray parts.

2D Helmholtz equation

� Du� r (w2 + �ew) u = f ; in W= R2 (P )

under the following hypotheses :

1. The local perturbation to the periodicity in the
domain of propagationW= R2 is contained in-
side the bounded regionWi . In We = W nWi

the periodicity is along thex andy directions
with the same periodL. We denote byC the
reference unit periodicity cell

C =
i

�
L
2

;
L
2

h2
:

Without loss of generality,Wi is chosen to be a
square of the same size asC:

Wi =
i

�
L
2

;
L
2

h2
:

The boundary ofWi is denoted bySi = ¶Wi .
See Figure (2) for notation.

Wi
We Si

C

ni

Figure (2): Geometry and notation.

2. The index of refraction satis�es the following
conditions:

(H1) 0< r � � r (x) � r + ;

(H2)
r p(x� L;y� L) = r p(x;y); 8(x;y);

Supp(r � r p) � Wi :

3. The support of the sourcef is contained inWi .

4. e is a physical parameter, typically small, that
represents a slight absorption in the medium.
We shall assume thate > 0.

It is well known that the problem (P ) admits a
unique solution inH1(4 ;W), the closed subspace
of functions inH1(W) whose laplacian is inL2(W).

In order to compute numerically the solution,
our goal is to characterize the restriction of the
solutionu to Wi , that we denoteui via a transparent
boundary condition onSi . Instead of looking for an
exact DtN condition as it is done in [13], we want
to write an impedance-like boundary condition. To
be more precise, let us de�ne the impedance

Z � Z(x) := w
p

r (x)

r

1+ �
e
w

(1)

with the convention Im
p

z > 0 andni the unit nor-
mal vector which is outgoing with respect toWi . We
wish to relate two “Robin traces” ofui along s i ,
namely

¶ui

¶ni + � Z ui; : the outgoing trace ofui

�
¶ui

¶ni + � Z ui; : the incoming trace ofui

Troughout the rest of this paper, this kind of bound-
ary traces will be symbolized by arrows whose di-
rections indicates what type of trace (outgoing or
incoming) is considered. We look for an operatorL ,
Robin-to-Robin or RtR, acting on functions de�ned



onSi such as the transparent boundary condition for
ui is written

�
¶ui

¶ni + � Z ui = L
h¶ui

¶ni + � Z ui
i

onSi : (2)

To characterize, at least in an abstract way, the op-
eratorL , it suf�ces to write (P ) as the transmis-
sion betweenui to ue, the restriction ofu to We and
rewrite the standard transmission conditions using
Robin traces ofue andui , namely

¶ue

¶ne + � Z ue = �
¶ui

¶ni + � Z ui

�
¶ue

¶ne + � Z ue =
¶ui

¶ni + � Z ui
(3)

(ue and ui exchange their outgoing and incoming
Robin traces) wherene = � ni is the unit normal
vector ofSi outgoing with respect toWe.

From (2) and (3),L be de�ned as

L : H � 1
2 (Si ) ! H � 1

2 (Si )

j 7! L j =
¶

¶neue(j ) + � Z ue(j )
�
�
�
Si

;

whereue(j ) 2 H1(4 ;We) is the unique solution of
the exterior problem posed onWe with non homoge-
neous incoming Robin conditions onSi , namely

�4 ue � r p (w2 + �ew) ue = 0 in We

�
¶ue

¶ne + � Z ue = j on Si :
(P e)

The notationue(j ) indicates the dependence of the
solution to (P e) on the incoming Robin boundary
data. The RtR operatorL maps the incoming Robin
boundary data ofue(j ) onto its outgoing Robin
boundary data.

We derive a method for the characterization of
the RtR operatorL and we show that it can be
characterized through the solution of local PDE
cell problems, the use of analytical tools such as
the Floquet-Bloch transform and the solution of
operator-valued quadratic or linear equations.

We shall restrict ourselves to a particular situ-
ation that makes the presentation of our method
simpler. More precisely, we shall consider the case
where the periodicity cellC and the boundarySi

are squares (as indicates previously), that implies
that they are doubly symmetric and

(H3) the restriction of the functionr p to C is a func-
tion doubly symmetric.

The notion of double symmetry will be explained in
section 3. This situation is often met in the appli-
cations. The method can be extended to the cases
where (H3) is relaxed ( see the appendix B of [13] ).

3 Double symmetry and
related results

We consider now a speci�c situation where the ge-
ometry and material properties, in addition to satis-
fying periodicity along the linesx andy, must satisfy
some symmetry properties.

3.1 General de�nitions

We introduce the two diagonal linesD1 = f (x;y) :
x = yg andD� 1 = f (x;y) : x = � yg. The symmetry
acrossD1 will be denoted byS1 and acrossD� 1 by
S� 1. See Figure (3).

A subset O is doubly symmetric if, the origin
being chosen as the barycenter ofO, it is invariant
through the transformationsS1 andS� 1 .

D1
D� 1

M

S� 1(M)

S1 � S� 1(M)

S1(M)

Figure (3): The symmmetriesS1 andS� 1

We will denoteOi ; i 2 f 0;1;2;3g the four isomor-
phic sets :

Oi = O
\

Q i

whereQ i ; i 2 f 0;1;2;3g are the four quadrants of
R2 represented in Figure (4).
A function n : O ! C is called doubly symmetric
when unchanged after re�ection acrossD1 andD� 1
:

n = n� S1 = n� S� 1:



Q3

Q2 Q0

Q1

Figure (4): The four quadrants ofR2, Q i ; i 2
f 0;1;2;3g

3.2 Functional spaces on doubly
symmetric sets

Let O be a doubly symmetric open set inR2 and
H = H p(O); p 2 N or H = H1(4 ;O). The spaceH
can be decomposed as the sum of four subspaces
of functions that are symmetric or antisymmetric
acrossD1 andD� 1 ( See Figure (5) for examples)

H(O) = H(s;s) � H(s;a) � H(a;s) � H(a;a); (4)

where

v 2 H(s;s) , v = + v� S1 = + v� S� 1;

v 2 H(a;a) , v = � v� S1 = � v� S� 1;

v 2 H(s;a) , v = + v� S1 = � v� S� 1;

v 2 H(a;s) , v = � v� S1 = + v� S� 1:

Note that this spaces are orthogonal inL2.

Given (p;q) 2 f s;ag2, we de�ne the closed
subspaceH1=2

( p;q)(¶O) of H1=2(¶O) by

H1=2
( p;q)(¶O) =

n
u
�
�
�
¶O

; u 2 H1
( p;q)(O)

o

and the closed subspaceH � 1=2
( p;q) (¶O) of H � 1=2(¶O)

by

H � 1=2
( p;q) (¶O) =

n ¶u
¶n

�
�
�
¶O

; u 2 H1
( p;q)(4 ;O)

o
:

REMARK 3.1
Despite the notation,

H � 1=2
( p;q) (¶O) ( H1=2

( p;q)(¶O)0:

By de�nition, we can prove that (4) holds forH =
H1=2(¶O) andH = H � 1=2(¶O) with

H( p;q) = H1=2
( p;q)(¶O) and H( p;q) = H � 1=2

( p;q) (¶O):

1
1 1

1

-1
1 -1

1

-1
-1 1

1

-1
1 1

-1

L2
(s;s) L2

(a;s) L2
(s;a) L2

(a;a)

Figure (5): Functions inL2
( p;q)(O), O = [ � 1;1]2.

In the sequel it will be useful to de�ne restriction
to a subset¶O0 � ¶O of functions de�ned in
H � 1=2(¶O) or H � 1=2

( p;q) (¶O). This is a slightly
delicate issue for an analytical point of view.

Let Rbe the restriction operator de�ned by

R : L2
�
¶O

�
! L2

�
¶O0

�

f 7! f
�
�
¶O0

;

For all (p;q) 2 f s;ag2, one checks thatR is an iso-
morphism fromL2

( p;q)(¶O) ontoL2(¶O0).

Let denoteR( p;q) the restriction ofR to L2
( p;q)(¶O).

Its inverse is an extension operator, which can be
given explicitly thanks to the symmetries. Given
f 0 2 L2(¶O0):

E( p;q)f 0j¶O0
= f 0;

E( p;q)f 0j¶O1
= epf 0 � S1;

E( p;q)f 0j¶O3
= eqf 0 � S� 1;

E( p;q)f 0j¶O2
= epeqf 0 � S1 � S� 1;

with es = 1 andea = � 1. For each(p;q) 2 f s;ag2,
we de�ne the following spaces

H1=2
( p;q)(¶O0) :=

n
R( p;q)f ; f 2 H1=2

( p;q)(¶O)
o

equipped with the graph norm. One can show that
R( p;q) is an isomorphism from

H1=2
( p;q)(¶O) onto H1=2

( p;q)(¶O0)

whose inverse isE( p;q) and that

H1=2
( p;q)(¶O0) �

n
f 0 2 H1=2(¶O0); E( p;q)f 0 2 H1=2

( p;q)(¶O)
o

:

Next, we extend the operatorR( p;q) to H � 1=2
( p;q) (¶O).



This can be done by duality, noticing that ((�; �
�

G is
the inner product inL2(G))

�
R( p;q)f ;y 0

�

¶O0
=

1
4

�
f ;E( p;q)y 0

�

¶O
; (5)

wheref 2 L2
( p;q)(¶O);y 0 2 L2(¶O0).

This suggests an extension ofR( p;q) as an operator

R( p;q) 2 L
�

H � 1=2
( p;q) (¶O);

�
H1=2

( p;q)(¶O0)
� 0

�

as follows

8 f 2 H � 1=2
( p;q) (¶O); 8y 0 2 H1=2

( p;q)(¶O0);

D
R( p;q)f ;y 0

E

¶O0
=

1
4

D
f ;E( p;q)y 0

E

¶O
: (6)

Thus, introducing the subspace of
�
H1=2

( p;q)(¶O0)
� 0:

H � 1=2
( p;q) (¶O0) = R( p;q)

�
H � 1=2

( p;q) (¶O)
�

; (7)

equipped with the graph norm,R( p;q) is an isomor-
phism from

H � 1=2
( p;q) (¶O) onto H � 1=2

( p;q) (¶O0):

Conversely,E( p;q) is extended as an operator

E( p;q) 2 L
�

H � 1=2
( p;q) (¶O0);H � 1=2

( p;q) (¶O)
�

;

using :

8 y 2 H � 1=2
( p;q) (¶O0); 8 f 2 H1=2

( p;q)(¶O);

< E( p;q)y ; f > ¶O= 4 < y ;R( p;q)f > ¶O0
: (8)

REMARK 3.2
We can easily see that

H1=2
(s;s)(¶O0) = H1=2(¶O0);

and H1=2
(a;a)(¶O0) = H1=2

00 (¶O0)

using the notation of [26] and

H1=2
(a;a)(¶O0) � H1=2

(a;s)(¶O0) � H1=2
(s;s)(¶O0)

and H1=2
(a;a)(¶O0) � H1=2

(s;a)(¶O0) � H1=2
(s;s)(¶O0)

with continuous injections. Finally, we have
8(p;q) 2 f s;ag2

H � 1=2
( p;q) (¶O0) � H1=2

( p;q)(¶O0)0� H1=2
(a;a)(¶O0)0

3.3 Physical assumptions and
related decomposition of L

The setsC, Wi andWe are doubly symmetric in the
sense of Section 3.2.

In the following, we will suppose that the re-
striction of r p to C is a function satisfying double
symmetry. Figure (6) presents some examples of
media possessing double symmetry.

Figure (6): Examples of media possessing dou-
ble symmetry : the functionr p is a constant re-
specti/bin/bash: respecti: command not found vely
in the dashed and the white regions.

Using properties of the laplace operator, we can
show that if the incoming Robin dataj has given
symmetry or antisymmetry properties, the solution
ue(j ) of the exterior problem (P e) satis�es the
same symmetries. Then, it is easy to conclude that
L preserves symmetry and antisymmetry:

THEOREM 3.3
For (p;q) 2 f s;ag2, L is a continuous map from

H � 1=2
( p;q) (Si) to H � 1=2

( p;q) (Si ).

This means that iff 2 H � 1=2(Si) has the decompo-
sition :

f = å
( p;q)2f s;ag2

f ( p;q); f ( p;q) 2 H � 1=2
( p;q) (Si);

then
L f = å i; j L ( p;q)f ( p;q);

where

L ( p;q) = L j
H� 1=2

(p;q) (Si )
2 L (H � 1=2

( p;q) (Si );H � 1=2
( p;q) (Si )) :

Hence we can writeL in block diagonal form:

L =

2

6
6
4

L (s;s) 0 0 0
0 L (s;a) 0 0
0 0 L (a;s) 0
0 0 0 L (a;a)

3

7
7
5 : (9)

Therefore characterizing and computingL amounts
to characterize and to compute each of theL ( p;q) 's.
For this, we will use a factorization ofL ( p;q) that we
construct in the next section.



4 A factorization of L (p;q)

The characterization ofL ( p;q) is based on the factor-
ization as the product of two operators. To do so, we
need to introduce some additional notation, summa-
rized by Figure (7).

eS

We

n
S0 � Si

0

eS+

eS�

Si

S�

S+

Ww

WH

Wi

Figure (7): 2D-plane medium.

We shall divide the boundaryeS = ¶WH of the half-
spaceWH into three parts:

eS = eS� [ S0 [ eS+ (10)

where

eS� =
�

x =
L
2

	
�

�
� ¥ ; �

L
2

�
;

S0 =
�

x =
L
2

	
�

�
�

L
2

;
L
2

�
� Si

0;

eS+ =
�

x =
L
2

	
�

� L
2

;+ ¥
�
:

4.1 The RtR operators eI( p;q).

We introduce the operator which maps the incoming
tracej on the squareSi of ue(j ) (i. e. the boundary
data of(P e) into another Robin data along another
boundary, namely the incoming trace ofue(j ) on
eS, as illustrated by Figure (8). Since the incoming
normal vector ofWH is nothing butex, this gives :

eI : H � 1=2(Si ) ! H � 1=2(eS)

j 7!
h ¶

¶x
ue(j ) + � Z ue(j )

i �
�
�
eS
;

and the associated operators:

eI( p;q) = eI
�
�
�
H� 1=2

(p;q) (Si )
2 L (H � 1=2

( p;q) (Si );H � 1=2(eS)) :

We

ni

eS

Si

h
¶ni ue(j ) + �Z ue(j )

i �
�
�
Si

= j

ue(j )

eI( p;q)

eS

eI(p;q) j =
h
¶xue(j ) + �Z ue(j )

i �
�
�
eS

ue(j )

Figure (8): De�nition of the RtR operatoreI( p;q).

The computation of these operators will be dis-
cussed in Section 6. SinceS0 = Si \ eS, we have
formally

8 j 2 H � 1=2
( p;q) (Si); eI( p;q) j = j on S0:

which can be stated more rigorously

eReI( p;q) j = R( p;q) j 2 H � 1=2
( p;q) (S0); (11)

where we have de�ned another restriction operator
eR: L2(eS) ! L2(S0):

eRy := y
�
�
S0

:

extended to an operator

eR2 L
�

H � 1=2(eS);H1=2
(a;a)(S0)0

�

by duality as we did forR( p;q) (See Section 3.2).



4.2 The halfspace RtR operator L H.

We de�ne the halfspace RtR operatorL H as follows

L H : H � 1=2(eS) ! H � 1=2(eS)

y 7!
h

�
¶
¶x

uH(y ) + � Z uH(y )
i �
�
�
eS
;

associated with the half space problem with incom-
ing Robin boundary conditions

� DuH � r p (w2 + �ew) uH = 0; in WH;

¶uH

¶x
+ � Z uH = y ; on eS;

(P H)

whereuH(y ) is the unique solution inH1(4 ;WH).
See Figure (9).

WH

eS

h
¶xuH(y ) + �Z uH(y )

i �
�
�
eS

= y

uH(y )

WH

L H

eS

L Hy =
h

� ¶xuH(y ) + �Z uH(y )
i �
�
�
eS

uH(y )

Figure (9): De�nition of NtD operatorL H .

4.3 The factorization of L ( p;q)

The important result concerning the factorization of
the desired RtR operatorL ( p;q) is the following the-
orem whose proof is formally a consequence of the
construction of the operators

L H and eI( p;q)

(see �gures (8) and (9)). Technically, the proof re-
lies on the uniqueness of the solution of (P H), see
[13, 12] for more details.

THEOREM 4.1
The operatoreR� L H � eI( p;q) maps

H � 1=2
( p;q) (Si ) into H � 1=2

( p;q) (Si
0)

and one has the factorisation

L ( p;q) = E( p;q) � eR� L H � eI( p;q): (12)

In (12), the two extension and restriction operators
E( p;q) andeRare trivial operators. However, we need
to have a numerical method for computing, at least
approximately, the operatorsL HandeI( p;q). The next
two sections are devoted to a characterization of
these operators that lead to a numerical method.

5 Computation of the
halfspace RtR operator L H

5.1 Technical tools

We recall the de�nition and more useful properties
of the Floquet Bloch Transform (see [22] for a more
complete exposition) of function of one variable.
This transform maps a function ofy2 R into a func-
tion (y;ky) 2 K where

K =
i

�
L
2

;
L
2

h
�

i
�

p
L

;
p
L

h
:

By de�ntion, ky is a dual variable or a wave number.

DEFINITION 5.1
The Floquet Bloch Transform (FBT) with periodL
is de�ned by ( see [22])

F : C¥
0 (R) ! L2(K)

f (y) ! f̂ (y;k);

with

f̂ (y;k) =

r
L

2p å
n2Z

f (y+ nL)e� inkL (13)

whereC¥
0 (R) is the set ofC ¥ -functions with com-

pact support.

Note that the sum in the de�nition of the FB Trans-
formation is �nite because of the compact support
of f .



PROPOSITION 5.2
The FB Transformation extends to an isometry be-
tweenL2(R) andL2(K) :

8( f ;g) 2 L2(R)2;
�
F f ;F g

�
L2(K) =

�
f ;g

�
L2(R)

This identity allows us to extend uniquely the
operatorF by density to an isometry fromL2(R)
to L2(K).

The most important formula for us is the in-
version formula:

PROPOSITION 5.3
The operatorF is an isometric isomorphism from
L2(R) into L2(K) whose inverse is given by

8 f̂ 2 L2(K); p.p.y 2
h

� L=2;L=2
i
; 8n 2 Z;

(F � 1 f̂ ) (y+ nL) =

r
L

2p

Z p
L

� p
L

f̂ (y;k)einkL dk:

We shall use in the sequel the following properties
of the FB transformation (the proofs are straightfor-
ward and left to the reader. See also [22]). These
properties make the FB transformation a priviligied
tool for the analysis of linear PDEs with periodic
coef�cients.

PROPOSITION 5.4
The FB tranformation has the following properties

1. it commutes with the differential operators, in
the sense that

F (
dy
dy

) =
¶
¶y

�
F y

�
:

2. It diagonalizes the translation operators

(t qy )(y) = y (y+ qL)
+

F (t qy )(y;k) = e� iqkLF y (y;k); (y;k) 2 K:

3. It commutes with the multiplication by a pe-
riodic function, in the sense that ifm is a L-
periodic function

F (my)(y;k) = m(y)F y (y;k); (y;k) 2 K:

Next we de�ne the partial Floquet Bloch Transform
in they� direction in the halfspaceWH

F y : L2(WH) ! L2(Ww �
i

�
p
L

;
p
L

h
)

u(x;y) 7! F y(x;y;ky)

such that

p.p.x 2 [
L
2

;+ ¥ [; (F yu)(x; � ; �) = F
�
u(x; �)

�
:

It is easy to see thatF y is an isomorphism from
L2(WH) into L2(Ww� ] � p=L;p=L]).

We want to know, now, how the Floquet Bloch
Transform can extend to every spaces appearing
naturally in the study. We need then to introduce
spaces of functions on the domainWw of so-called
ky quasi-periodic functions (ky being a parameter in
] � p=L;p=L[. We start from smooth quasi-periodic
functions inWw:

C¥
ky

(Ww) =
n

u = ũjWw; ũ 2 C¥ (WH);

ũ(x;y+ L) = e�kyL ũ(x;y)
o

:

Let H1
ky

(Ww) be the closure ofC¥
ky

(Ww) in H1(Ww).

H1
ky

(Ww) =
n

u 2 H1(Ww); ujS+ = e�kyL ujS�

o
:

where in the last equality we have identi�ed the
spacesH1=2(S+ ) andH1=2(S� ).

Let H1
ky

(4 ;Ww) be the closure ofC¥
ky

(Ww) of

H1(4 ;Ww) =
n

u 2 H1(Ww);Du 2 L2(Ww)
o

:

or equivalently

H1
ky

(4 ;Ww) =
n

u 2 H1(4 ;Ww);

¶u
¶y

(x;y+ L) = e�kyL ¶u
¶y

(x;y)
o

:

where in the last equality we have identi�ed the
spacesH1=2

00 (S+ )0andH1=2
00 (S� )0.

The spaceH1=2
ky

(S0) is de�ned by

H1=2
ky

(S0) = g0

�
H1

ky
(Ww)

�

whereg0 2 L (H1(Ww);H1=2(S0)) is the trace map
onS0 :

8u 2 H1(Ww); g0u = u
�
�
�
S0

:

H1=2
ky

(S0) is then a dense subspace ofH1=2(S0).

Moreover, the injection fromH1=2
ky

(S0) onto



H1=2(S0) is continuous.

We de�neH � 1=2
ky

(S0) as the dual ofH1=2
ky

(S0).

Finally, the trace application

g1 2 L (H1(4 ;Ww);H1=2
(a;a)(S0)0)

de�ned by :

8u 2 H1(4 ;Ww); g1u =
¶u
¶x

�
�
�
S0

:

is a continous application from

H1
ky

(4 ;Ww) ontoH � 1=2
ky

(S0):

Moreover, we can show that

H � 1=2
ky

(S0) = g1

�
H1

ky
(4 ;Ww)

�

We can now state the following results.

THEOREM 5.5
F y is an isomorphism fromH1(WH) into
�
�
�
�
�
�
�
�
�
�
�
�

H1
QP

� �
� p

L ; p
L

�
� Ww

�
=

n
û 2 L2

�
� p

L ; p
L ;H1(Ww)

�
=

for a. e.ky 2
�
� p

L ; p
L

�
; û(�;ky) 2 H1

ky
(Ww)

o
;

equipped with the norm ofL2
�

� p
L ; p

L ;H1(Ww)
�
.

F y is an isomorphism fromH1(4 ;WH) into
�
�
�
�
�
�
�
�
�
�
�
�

H1
QP

�
4 ;

�
� p

L ; p
L

�
� Ww

�
=

n
û 2 L2

�
� p

L ; p
L ;H1(4 ;Ww)

�
=

for a. e.ky 2
�
� p

L ; p
L

�
; û(�;ky) 2 H1

ky
(4 ;Ww)

o
:

equipped with the norm ofL2
�

� p
L ; p

L ;H1(4 ;Ww)
�
.

F y is an isomorphism fromH1=2(eS) into
�
�
�
�
�
�
�
�
�
�
�
�

H1=2
QP

� �
� p

L ; p
L

�
� S0

�
=

n
ˆj 2 L2

�
� p

L ; p
L ;H1=2(S0)

�
=

for a. e.ky 2
�

� p
L ; p

L

�
; ˆj (�;ky) 2 H1=2

ky
(S0)

o
:

equipped with the norm

k ˆj k2
H1=2

QP
=

Z p=L

� p=L
k ˆj (�;ky)k2

H1=2
ky

(S0)
dky:

Finally, we can extend by duality the de�nition of
F y to the spaceH � 1=2(eS) introducing the dual of

H1=2
QP

� �
� p

L ; p
L

�
� S0

�

�
�
�
�
�
�
�
�
�
�
�
�

H � 1=2
QP

� �
� p

L ; p
L

�
� S0

�
=

n
û 2 L2

�
� p

L ; p
L ; H1=2

aa (S0)
�

=

for a. e.ky 2
�
� p

L ; p
L

�
; û(�;ky) 2 H � 1=2

ky
(S0)

o
:

;

DEFINITION 5.6
Let y be inH � 1=2(eS), the following application (<
�; � > is the duality product betweenH � 1=2(eS) and
H1=2(eS))

ˆj 7! hy ;F � 1
y ˆj i

is a continuous linear application of

H1=2
QP

� �
�

p
L

;
p
L

�
� S0

�

because of Theorem 5.5. The theorem of Riesz rep-
resentation implies then

9ŷ 2 H � 1=2
QP

� �
�

p
L

;
p
L

�
� S0

�
; hŷ ; ˆj i = hy ; j i

where the �rst duality product is between

H � 1=2
QP

� �
�

p
L

;
p
L

�
� S0

�
andH1=2

QP

� �
�

p
L

;
p
L

�
� S0

�

and the second one is between

H � 1=2(eS) and H1=2(eS):

Finally, we de�ne the FBTF y in H � 1=2(eS) by
8y 2 H � 1=2(eS);

F yy = ŷ 2 H � 1=2
QP

� �
�

p
L

;
p
L

�
� S0

�

which coincides with the classical de�nition in
L2(eS) (see Proposition 5.2). Similarly, for any

ŷ 2 H � 1=2
QP

� �
�

p
L

;
p
L

�
� S0

�
;

we de�ne by dualityF � 1
y ŷ in H � 1=2(eS).

5.2 Reduction of the halfspace
problem to half-waveguide
problems

In this section, we reduce the solution of the halfs-
pace problem (P H) and thus the characterization of
L H to the solution of a family of a half-waveguide



problem inWw (See Figure (7)) parametrized by the
wavenumberky.

Let uH(y ) be the solution of (P H) andF y
�
uH(y )

�

its FBT in the variabley. Applying F y to (P H)
and using Proposition 5.4 one easily sees that each
F yuH(y ) ( �;ky) is the solution of a waveguide
problem. More precisely,

THEOREM 5.7
For eachky 2] � p=L;p=L[,

ûH
ky

:= F yuH(y ) ( �;ky)

is the unique solution inH1
ky

(4 ;Ww) of the half-
waveguide problem

� DûH
ky

� r p (w2 + �ew) ûH
ky

= 0; in Ww

h ¶
¶x

ûH
ky

+ � Z ûH
ky

i �
�
�
S0

= ŷ ky;
( ˆP H

ky
)

whereŷ ky = ŷ (�;ky) 2 H � 1=2
ky

(S0):

Hence to determine the solutionuH(y ) of (P H),
we compute for allky 2] � p=L;p=L[ the solution
ûH

ky
(ŷ ky) of ( ˆP H

ky
) and use the inversion formula in

Proposition 5.3 :8 (x;y) 2 Ww; 8 n 2 Z;

uH(y )(x;y+ nL) =

r
L
2p

p
LZ

� p
L

ûH
ky

(ŷ ky) (x;y) e�nkyL dky:

(14)
Let us remind that the halfspace RtR operatorL H is
de�ned by : 8y 2 H � 1=2(eS);

L H y =
h

�
¶
¶x

uH(y ) + � Z uH(y )
i �
�
�
eS
:

Let us introduce the RtR operator onS0 for the ky
quasi periodic half-waveguide problem, namely

L w(ky) 2 L
�
H � 1=2

ky
(S0)

�

such that for anŷy ky 2 H � 1=2
ky

(S0)

L w(ky)ŷ ky :=
h

�
¶
¶x

ûH
ky

+ � Z ûH
ky

i �
�
�
S0

:

whereûky is the solution of ˆP H
ky

. Let

bL H 2 L
�

H � 1=2
QP

�
] � p=L;p=L[� S0

� �

such that, forŷ in H � 1=2
QP

�
] � p=L;p=L[� S0

�
,

(bL H ŷ ) ( �;ky) = L w(ky)ŷ (�;ky): (15)

The link betweenL H andbL H is given by the

THEOREM 5.8
The halfspace RtR operatorL H is given by:

L H = F � 1
y � bL H � F y (16)

wherebL H is given by(15).

5.3 Solving the half-waveguide
problems ( ˆP H

ky
)

Here we discuss the determination ofL w(ky). We
shall use the division of the half-waveguide into pe-
riodicity cells separated by vertical segments (See
Figure (10) ) :

Ww =
+ ¥[

n= 0

Cn; Cn := C + ( nL;0); (17)

The segmentsSn = S0 + ( nL;0) can all be identi-
�ed to the leftmost oneS0 � [� L=2;L=2] and the
cellsCn can all be identi�ed to the �rst cellC1 = C.

x
y

S0

C1

S1

C2

S2 Sn� 1

Cn

Sn

S�S�
1 S�

2 S�
n

S+S+
1 S+

2 S+
n

Ww

Figure (10): Notation for a half guide

By periodicity in x, the construction of ˆuH
ky

in
Ww will reduced to the knowledge of two linear op-
erators ( see Figure (11) for a schematic de�nition).
The �rst one, called the propagation operator, is
denotedP(ky) and de�ned by

P(ky) : H � 1=2
ky

(S0) ! H � 1=2
ky

(S0)

ŷ ky 7!
� ¶
¶x

ûH
ky

+ � Z ûH
ky

� ��
�
S1

:
(18)

One can show thatP(ky) is compact (using interior
elliptic regularity for ûH

ky
), injective (using an

argument of unique continuation) and has a spectral
radius less than 1 (because of theL2 nature of ˆuH

ky
).

See [21, 12] for more details for the proof of these
results.

The second operator,D(ky), is de�ned by

D(ky) : H � 1=2
ky

(S0) ! H � 1=2
ky

(S0)

ŷ ky 7!
�
�

¶
¶x

ûH
ky

+ � Z ûH
ky

� �
�
�
S1

:
(19)



ûH
ky

(ŷ ky)
�
�
�
C1S0 S1

ŷ ky

P(ky) ŷ ky

ûH
ky

(ŷ ky)
�
�
�
C1S0 S1

ŷ ky D(ky) ŷ ky

Figure (11): The operatorsD(ky) andP(ky).

Using the periodicity of the problem, one easily that

� ¶
¶x

ûH
ky

+ � Z ûH
ky

� �
�
�
Sj � 1

= P(ky) j � 1 ŷ ky

�
�

¶
¶x

ûH
ky

+ � Z ûH
ky

� ��
�
Sj

= D(ky) P(ky) j � 1 ŷ ky

Then, by linearity, we have for anyj � 1;

ûH
ky

(ŷ ky)
�
�
�
C j

= e0�
ky;P(ky) j � 1 ŷ ky

�

+ e1�
ky;D(ky)P(ky) j � 1 ŷ ky)

�
; (20)

ûH
ky

(ŷ ky)
�
�
�
C1S0 S1

ŷ ky D(ky)ŷ ky

ûH
ky

(ŷ ky)
�
�
�
C2S1 � S0 S2 � S1

P(ky)ŷ ky D(ky)P(ky)ŷ ky

Figure (12): ˆuH
ky

(ŷ ky) in the �rst two cells.

where for anyŷ ky 2 H � 1=2
ky

(S0), the two fonctions

e0(ky; ŷ ky) and e1(ky; ŷ ky);

namely the unique solutions inH1(C) of the follow-
ing elementary cell problems posed onC:

� Dè � r p (w2 + �ew) è = 0; in C; (21)

satisfyingky quasi-periodic boundary conditions on
S+

1 etS�
1 :

è
�
�
�
S+

1

= e�kyL è
�
�
�
S�

1

;

¶è
¶y

�
�
�
S+

1

= e�kyL ¶è
¶y

�
�
�
S�

1

;
(22)

and nonhomogeneous incoming Robin conditions
onS0 etS1 (see Figure (13) for an illustration):

� ¶e0

¶x
+ � Z e0� ��

�
S0

= ŷ ky;
�
�

¶e0

¶x
+ � Z e0� ��

�
S1

= 0;

� ¶e1

¶x
+ � Z e1� ��

�
S0

= 0;
�
�

¶e1

¶x
+ � Z e1� �

�
�
S1

= ŷ ky;

(23)
Formula (20) shows that the computation of the

e0(ky; ŷ ky)
S0 S1

ŷ ky 0

e1(ky; ŷ ky)
S0 S1

0 ŷ ky

Figure (13): The functionsej (ky; ŷ ky); j = 0;1

solutionûH
ky

is achieved through the characterization
of the two operatorsD(ky) andP(ky). At this stage
of the exposition, the de�nitions of these operators
rely on ûH

ky
(ŷ ky) which is a solution of a problem

posed in an unbounded domain. We shall see in
the following how to determine these operators by
solely solving local problems of the type (21, 22,
23), which is one key point of the method.

Note that the relation (20) ensures that ˆuH
ky

(ŷ ky) is
the solution of the Helmholtz equation inside each
cell Cj . To make the characterization complete, we
have to write that the correct transmission condition



acrossSj , that we can write as

� ¶ûH
ky

¶x
+ � Z ûH

ky

� ��
�
C j

=
� ¶ûH

ky

¶x
+ � Z ûH

ky

� �
�
�
C j+ 1

;

�
�

¶ûH
ky

¶x
+ � Z ûH

ky

� �
�
�
C j

=
�
�

¶ûH
ky

¶x
+ � Z ûH

ky

� ��
�
C j+ 1

:

(24)
If we de�ne the local RtR operators such that for
any incoming Robin data (see Figure (14) for a
schematic illustration)

ŷ ky 2 H � 1=2
ky

(S0);

T00
ky

ŷ ky =
�
�

¶
¶x

e0(ky; ŷ ky) + � Z e0(ky; ŷ ky

� ��
�
S0

;

T01
ky

ŷ ky =
� ¶
¶x

e0(ky; ŷ ky) + � Z e0(ky; ŷ ky)
� �
�
�
S1

;

T10
ky

ŷ ky =
�
�

¶
¶x

e1(ky; ŷ ky) + � Z e1(ky; ŷ ky

� ��
�
S0

;

T11
ky

ŷ ky =
� ¶
¶x

e1(ky; ŷ ky) + � Z e1(ky; ŷ ky)
� �
�
�
S1

;

(25)
the reader can easily that the relations of continuity

e0(ky; ŷ ky)
S0 S1

T00(ky) ŷ ky T01(ky) ŷ ky

e1(ky; ŷ ky)
S0 S1

T10(ky) ŷ ky T11(ky) ŷ ky

Figure (14): The local RtR operatorsT i j
ky

.

(24) for j = 1 are equivalent to

T01
ky

+ T11
ky

D(ky) = P(ky)

D(ky) = T00
ky

P(ky) + T10
ky

D(ky) P(ky):
(26)

EliminatingD(ky), the operatorP(ky) is then a solu-
tion of the stationary Riccati equation (the operator

T11
ky

is invertible, see [12])

T10
ky

�
T11

ky

� � 1 P(ky)2+
�

T00
ky

� T01
ky

�
T11

ky

� � 1T10
ky

�
�
T11

ky

� � 1
�

P(ky)

+
�
T11

ky

� � 1 T01
ky

= 0:

Actually, this equation characterizes uniquely the
operatorP(ky):

THEOREM 5.9 (CARACTERISTIC EQUATION )
The operatorP(ky) is the unique compact operator

X 2 K
�
H � 1=2

ky
(S0)

�

satisfying the condition

r (P(ky)) < 1 (27)

which solves the stationary Riccati equation:

T (ky;X) = 0; (ER
ky

)

where

T (ky; �) : L
�
H � 1=2

ky
(S0)

�
! L

�
H � 1=2

ky
(S0)

�

and is the quadratic map given by

T (ky;X) = T10
ky

�
T11

ky

� � 1 X2 +
�
T11

ky

� � 1 T01
ky

+
�

T00
ky

� T01
ky

�
T11

ky

� � 1T10
ky

�
�
T11

ky

� � 1
�

X:

OnceP(ky) is determined solving the stationary Ri-
catti equation,D(ky) is obtained using the �rst rela-
tion of (26) :

D(ky) =
�
T11

ky

� � 1 �
P(ky) � T01

ky

�
;

we build cell by cell the solution ˆuH
ky

using (20) and
�nally using again (20) forj = 0, we see that

L w(ky) = T00
ky

+ T10
ky

D(ky): (28)

6 Characterization of the
RtR operators eI(p;q)

In this section, we establish a linear equation that
characterized the operatoreI( p;q) and is adapted for
numerical computation. This requires to introduce
again new operators.



6.1 New RtR operators associated
to the half space problem

Here we de�ne some incoming RtR operators asso-
ciated with the halfspace problem (P H). Let S be
the boundary ofWw :

S = S� [ S0 [ S+ (29)

where S� =
�
+ ¥ ; L

2

�
�

�
y = � L

2

	
.

We can identify eS with S (� R), as well as
eS� with S� via the bijectionF (see Figure (15)) :

F :

(L=2;s) 2 eS� 7! (� s;L=2) 2 S� ;

(L=2;s) 2 S0 7! (L=2;s) 2 S0;

(L=2;s) 2 eS+ 7! (s;L=2) 2 S+ :

(30)

eS
F

S

Figure (15): Identi�cation ofeS with S.

Accordingly, functions de�ned onS can be asso-
ciated to functions onS. More precisely, for any
y : S ! C, we will note in the following :

y
�
�
� �!

S �
= y � F � 1

�
�
�
S�

The arrow in the notation
�!
S � simply emphasizes

the fact that he identi�cation betweenS� and eS�

is coherent with the orientations indicated of Figure
(15). Next we introduce additional operators the in-
terest of which will appear later.

To de�ne rigorously these operators, we �rst recall
that taking the restriction of a function de�ned on
eS respectively toS0, eS+ andeS� , can be extended,
when properly de�ned by duality, as a continuous
linear operator from

H � 1=2(eS)

repectively in

H1=2
aa (eS0)0;H1=2

00 (eS+ )0andH1=2
00 (eS� )0:

We need an analogous framework for the concate-
nation operation : construct a function oneS by con-
catenating functions de�ned onS0, eS+ andeS� . For
this we need new functional spaces :

H1=2
aa (eS) =

n
u 2 H1=2(eS); u

�
�
�
S0

2 H1=2
aa (S0)

o

equipped with its natural Hilbert structure and its
dual (this is a de�nition)

H � 1=2
aa (eS) :=

�
H1=2

aa (eS)
� 0:

The interest of this space is that the concatenation
operator, naturally de�ned forL2 functions, can be
extended continuously into a continuous operator
from the product

H1=2
aa (eS0)0� H1=2

00 (eS+ )0� H1=2
00 (eS� )0

into H � 1=2
aa (eS).

DEFINITION 6.1
Giveny 2 H � 1=2(eS) anduH(y ) be the solution of
(P H), we de�ne the RtR operators:

IH
(s;s) : H � 1=2(eS) �! H � 1=2

aa (eS)

such that for ally 2 H � 1=2(eS)

IH
(s;s)y jeS� � +

h
�

¶
¶y

uH(y ) + � Z uH(y )
i �
�
� �!

S �
;

IH
(s;s)y jS0 = y jS0;

IH
(s;s)y jeS+ � +

h
+

¶
¶y

uH(y ) + � Z uH(y )
i �
�
� �!

S +
;

IH
(s;a) : H � 1=2(eS) �! H � 1=2

aa (eS)

such that for ally 2 H � 1=2(eS)

IH
(s;a)y jeS� � �

h
�

¶
¶y

uH(y ) + � Z uH(y )
i �
�
� �!

S �
;

IH
(s;a)y jS0 = y jS0;

IH
(s;a)y jeS+ � +

h
+

¶
¶y

uH(y ) + � Z uH(y )
i �
�
� �!

S +
;

IH
(a;s) : H � 1=2(eS) �! H � 1=2

aa (eS)

such that for ally 2 H � 1=2(eS)

IH
(a;s)y jeS� � +

h
�

¶
¶y

uH(y ) + � Z uH(y )
i �
�
� �!

S �
;

IH
(a;s)y jS0 = y jS0;

IH
(a;s)y jeS+ � �

h
+

¶
¶y

uH(y ) + � Z uH(y )
i �
�
� �!

S +
;



IH
(a;a) : H � 1=2(eS) �! H � 1=2

aa (eS)

such that for ally 2 H � 1=2(eS)

IH
(a;a)y jeS� � �

h
�

¶
¶y

uH(y ) + � Z uH(y )
i �
�
� �!

S �
;

IH
(a;a)y jS0 = y jS0;

IH
(a;a)y jeS+ � �

h
+

¶
¶y

uH(y ) + � Z uH(y )
i �
�
� �!

S +
:

6.2 Characterization of the
incoming RtR operators eI( p;q)

By de�nition of eI( p;q) and thanks to (11), it is easy to
see that each incoming RtR operator belongs to the
following af�ne space :

L 0
( p;q) =

n
L 2 L

�
H � 1=2

( p;q) (Si);H � 1=2(eS)
�

;

8 ed 2 H � 1=2
( p;q) (Si ); eR(L ed) = R( p;q)

ed
o

:

whereeR is de�ned in 4.1. Now we present the fun-
damental relation satis�ed byeI( p;q).

THEOREM 6.2
For each(p;q) 2 f s;ag2, the operatoreI( p;q) is the
unique solution to the following problem:

Find eI 2 L 0
( p;q); eI = IH

( p;q) � eI: (E( p;q))

� PROOF: We give the proof foreI(s;s) . The other cases
are treated similarly.

We �rst prove thateI(s;s) is a solution ofE(p;q) .

Sincej 2 H � 1=2
(s;s) (Si), ue(j ) 2 H1

(s;s)(W
e). Thus, from

ue(j )
�
�
�
WH

= uH(eI(s;s) j );

andeS+ = S1S+ we deduce that
h ¶

¶x
ue(j )+ �Z ue(j )

i �
�
�
eS+

�
h ¶

¶y
ue(j )+ �Z ue(j )

i �
�
�
eS+

=
h ¶

¶y
uH(eIe

(s;s) j )+ �Z uH(eIe
(s;s) j )

i �
�
�
S+

;

In the same way, fromeS� = S� 1S� , we deduce that
h ¶

¶x
ue(j )+ �Z ue(j )

i �
�
�
eS�

�
h

�
¶
¶y

ue(j )+ �Z ue(j )
i �
�
�
eS�

=
h

�
¶
¶y

uH(eIe
(s;s) j )+ �Z uH(eIe

(s;s) j )
i �
�
�
S�

;

Completing the above equalities with

h ¶
¶x

ue(j )+ �Z ue(j )
i �
�
�
S0

= j
�
�
�
S0

we easily conclude, using the de�nition ofeI(s;s) .

For the uniqueness of the solution, one combines
symmetry arguments with uniqueness results for quarter
plane problems with incoming RtR conditions. The
idea are are similar to the ones developed in [13, 12],
respectively for Dirichlet or Neumann conditions. �

The equationE( p;q) is quite abstract for he moment
but we are going to see how it can be solved
numerically.

6.3 About the resolution of the
a�ne equation (E( p;q))

To be able to solveE( p;q) we need to be able

to compute the operatorsIH
( p;q):

The computation of these operators relies on the
solution uH(y ) of the halfspace problem (P H)
which can be computed via their Floquet Bloch
transforms and the method described in section 5.

To express our result, we need to introduce some
local RtR operators depending on the elementary
solutions

e0 ande1

of the cell problems (21)-(22)-(23) (see Figure (10)),
namely:

I0;� (ky) 2 L
�
H � 1=2

ky
(S0);H1=2

aa (S�
1 )0�

I1;� (ky) 2 L
�
H � 1=2

ky
(S0);H1=2

aa (S�
1 )0

�
;

de�ned for all ŷ ky 2 H � 1=2
ky

(S0) by

I0;� (ky) ŷ ky =
�
�

¶
¶y

e0(ky; ŷ ky) + � Z e0(ky; ŷ ky

� ��
� �!

S �
1

;

I0;+ (ky) ŷ ky =
�
+

¶
¶y

e0(ky; ŷ ky) + � Z e0(ky; ŷ ky

� ��
� �!

S+
1

;

I1;� (ky) ŷ ky =
�
�

¶
¶y

e1(ky; ŷ ky) + � Z e1(ky; ŷ ky

� ��
� �!

S �
1

;

I1;+ (ky) ŷ ky =
�
+

¶
¶y

e1(ky; ŷ ky) + � Z e1(ky; ŷ ky

� ��
� �!

S+
1

;

(31)



where

�!
S +

1 =
� L

2 ; 3L
2

�
�

�
� L

2

	

and
�!
S �

1 =
� 3L

2 ; L
2

�
�

�
� L

2

	

are oriented segments (the trace on
�!
S +

1 is taken in
the direction of increasingx whereas the trace on
�!
S �

1 is taken in the direction of decreasingx). See
Figure (16).

e0(ky; ŷ ky)

�!
S �

1

�!
S +

1

I0;� (ky) ŷ ky

I0;+ (ky) ŷ ky

e1(ky; ŷ ky)

�!
S �

1

�!
S +

1
I1;+ (ky) ŷ ky

I1;� (ky) ŷ ky

Figure (16): Other local RtR operatorsI i;� (ky).

Next, we form new operators in

L
�
H � 1=2

ky
(S0);H1=2

aa (S0)0�

namely

K � (kx;ky) = e� �Lkx I � (ky)
�

I � P(ky)e� �Lkx
� � 1

where

I � (ky) = I0;� (ky) + I1;� (ky)D(ky)

and, settinges = 1 ansea = � 1,

K ( p;q)(kx;ky) = I + ep K+ (kx;ky)

+ eq K � (kx;ky):
(32)

It can be shown that, for each(p;q) 2 f a;sg2,

K ( p;q)(kx;ky) 2 L
�
H � 1=2

ky
(S0);H � 1=2

kx
(S0)

�
; (33)

and leads to a useful characterization ofIH
( p;q):

PROPOSITION 6.3
For all (p;q) 2 f s;ag2; let

ÎH
( p;q) 2 L

�
H � 1=2

QP

��
�

p
L

;
p
L

�
� S0)

� �

de�ned by:

ÎH
( p;q) = F y � IH

( p;q) � F � 1
y :

For anyŷ 2 H � 1=2
QP

� �
� p

L ; p
L

�
� S0)

�
; one has

ÎH
( p;q)ŷ (�;kx) =

L
2p

p=LZ

� p=L

K ( p;q)(kx;ky)ŷ (�;ky) dky:

� PROOF: We write the proof for(p;q) = ( s;s), the
other cases follow similarly.

For simplicity, we restrict ourselves to the case of
suf�ciently smoothy for instance. In this case,

IH
(s;s)y 2 L2(eS)

and its restriction to any subset ofeS is de�ned directly.
The extension to the more general case can be done by
duality.

In the casen = 0, Expression (14) gives:

uH(y )j �!
S � =

r
L

2p

p=LZ

� p=L

ûH
ky

(ŷ ky)j �!
S � dky

whereŷ ky = F yy (�;ky). We denote by
�!
S �

n and
�!
S+

n the
following sequence of intervals of lengthL :

8n � 1;

�!
S �

n =
� 3L

2
+ nL;

L
2

+ nL
�

�
� � L

2

	
;

�!
S +

n =
� L

2
+ nL;

3L
2

+ nL
�

�
� L

2

	
:

Using the relations (20), we see easily that the outgoing
Robin data of the solution ˆuH

ky
(ŷ ky) of ( ˆP H

ky
) on

�!
S+

n and
�!
S �

n can be expressed via the operatorsI f 0;1g;� (ky) de-
�ned in (31), for all ky 2] � p=L;p=L[ andn � 1:

�
+

¶ûH
ky

(ŷ ky)

¶y
+ �Z ûH

ky
(ŷ ky)

� �
�
� �!

S +
n

= I+ (ky) P(ky)n� 1 ŷ ky;

�
�

¶ûH
ky

(ŷ ky)

¶y
+ �Z ûH

ky
(ŷ ky)

� �
�
� �!

S �
n

= I � (ky) P(ky)n� 1 ŷ ky:

whereI � (ky) = I0;� (ky)+ I1;� (ky)D(ky). Using these re-
lations, we obtain



� On
�!
S � : 8n � 1;

IH
(s;s)y j �!

S �
n

=

r
L

2p

p=LZ

� p=L

I � (ky) P(ky)n� 1 ŷ ky dky

� OnS0 :
IH
(s;s)y jS0 = y jS0

� On
�!
S + : 8n � 1;

IH
(s;s)y j �!

S +
n

=

r
L

2p

p=LZ

� p=L

I+ (ky) P(ky)n� 1 ŷ ky dky

We apply then the FB-Transform toIH
(s;s)y using the iden-

ti�cation S � R,

F y(IH
(s;s)y )( �;kx) =

r
L

2p

� 1

å
n= ¥

IH
(s;s)y j �!

S �
n
e�nkxL

+ IH
(s;s)y jS0 +

+ ¥

å
n= 1

IH
(s;s)y j �!

S +
n
e� �nkxL

�
:

By inverting the integrals over[� p=L;p=L] and the sum
overn, we are led to using the following formula

+ ¥

å
n= 1

P(ky)n� 1e� �nLkx = e� �Lk
�

I � P(ky)e� �Lkx

� � 1
: (34)

In fact for everyky, P(ky) is compact and its spectral ra-
dius is strictly less than 1. Actually, we could prove (see
[12] for more details) that fore > 0 small enough, the
spectral radius ofP(ky) is uniformly bounded inky by a
constant that is strictly less than 1:

9t > 0; 8ky 2
�

�
p
L

;
p
L

�
; r (P(ky)) � e� t e :

The property:

lim
n! + ¥

kP(ky)nk1=n = r (P(ky))

for the norm ofL (L2(S0)) ([31]), implies that for some
r � 2 ]e� t e ;1[, n large enough we have for allky

kP(ky) jk � r j
�

which yields the absolute convergence of the series (34).
Therefore, for eachky andkx, I � P(ky)e� �Lkx is inversible
and the sum (34) converges uniformely in the norm of
L (L2(S0)) . The inversion of the integral and the sum
is then possible. �

Let us come back now to the resolution of the af�ne
equations (E( p;q)). Since the operatorsIH

( p;q) (see
De�nition 6.1 and Proposition 6.3) are de�ned via
their Floquet Bloch tranforms, it makes sense that
we will try to formulate (E( p;q)) using the FB tran-
form as well.

COROLARY 6.4
For anyj 2 H � 1=2

( p;q) (Si), the function

ŷ i j = F y
�
eI( p;q) j

�
2 H � 1=2

QP

� �
�

p
L

;
p
L

�
� S0)

�

is the unique solution to the following problem:

Findŷ 2 H � 1=2
QP

� �
�

p
L

;
p
L

�
� S0)

�
; such that

(i) ŷ � ÎH
( p;q)ŷ = 0;

(ii )

r
L

2p

p=LZ

� p=L

ŷ (�;kx) dkx = R( p;q) j ;

(35)
whereR( p;q) is the restriction operator onS0 de�ned
in section 3 and̂IH

( p;q) is given in Proposition 6.3.

� PROOF: To obtain (35-(i)), we apply the FB tranform
to the equation

eI(p;q) j = IH
(p;q)

�
eI(p;q) j

�
;

and use proposition 6.3. The relation (35-(ii)) expresses
in terms of the FB variable the condition :

r
L

2p

p=LZ

� p=L

F y
�
eI(p;q) j

�
(�;kx) dkx = eI(p;q) j jS0 = j jS0:

�

Numerically, we wish to apply a Galerkin procedure
to approximate the problem (35). This means that
we would like to look for the unknown function in a
vector space which amounts to make the condition
(35-(ii)) homogeneous. To do so, we introduce an
extension operator

eEj 2 L
�

H � 1=2
( p;q) (Si);H � 1=2(eS)

�

such that
eEj

�
�
�
S0

= R( p;q) j ; (36)

so thateI( p;q) j � eEj = 0 onS0.

Introducing the new unknown

ŷ 0
pq = F y

�
eI( p;q) j � eEj

�
;

we easily see that it is the unique solution to the
problem :

Find ŷ 0 2 H � 1=2
QP

� �
�

p
L

;
p
L

�
� S0)

�
; such that



(i) ŷ 0 � Îe;H
( p;q)ŷ

0 = ĝj ;

(ii )

p=LZ

� p=L

ŷ 0(�;kx) dkx = 0;
(37)

with ĝj 2 H � 1=2
QP

� �
� p

L ; p
L

�
� S0)

�
given by

ĝj = � F y eE j + Îe;H
( p;q) F y eE j (38)

In practice, we will solve (37) instead of (35).

6.4 Variational formulation

Before discussing a variational formulation of (37)
we de�ne some function spaces:

V := H � 1=2
QP

� �
�

p
L

;
p
L

�
� S0)

�
; (39)

W :=
�

ŷ 0 2 V;

p=LZ

� p=L

ŷ 0(�;k) dk= 0
	

; (40)

V0:= H1=2
QP

� �
�

p
L

;
p
L

�
� S0)

�
; (41)

and

W0:=
�

ŷ 0 2 V0;

p=LZ

� p=L

ŷ 0(�;k) dk= 0
	

: (42)

REMARK 6.5
According to proposition 5.3, it is clear that

W = F y

� �
y 2 H � 1=2(eS); y � 0 onS0

	 �
;

where we recall that the restriction of a function in
H � 1=2(eS) is in [H1=2

00 (S0)]0.

Similarly,

W0= F y

� �
y 2 H+ 1=2(eS); y � 0 onS0

	 �
:

Note that by de�nition,V0 is the dual ofV. In what
follows, we shall denote the duality product between
V andV0

hŷ ; q̂ �i V :=

p=LZ

� p=L



ŷ (�;kx); q̂(�;kx)

�

where the duality product inside the integral is the
one betweenH � 1=2

kx
(S0) andH1=2

kx
(S0). This duality

product simply extends the standard inner product
in

L2
� �

�
p
L

;
p
L

�
� S0)

�
:

We choose to solve by a Galerkin method the prob-
lem (37), which according to proposition 6.3 corre-
sponds to the integral equation:8kx 2] � p

L ; p
L

�
;

ŷ 0(�;kx) �

p=LZ

� p=L

K ( p;q)(kx;ky) ŷ 0(�;ky) dky = ĝj (�;kx);

with the linear constraint (37-(ii)). The kernel
K ( p;q) is de�ned in (32).

Now we describe the variational formulation
where we look for a solution inW with test
functions also inW0.

PROPOSITION 6.6 (VARIATIONAL FORMULATION )
For (p;q) 2 f s;ag2 andj 2 H � 1=2

( p;q) (Si ), we have

eI( p;q) j = eEj + F � 1
y ŷ 0

pq;

where eEj is de�ned by (36) and ŷ 0
pq 2 W is the

unique solution to the following problem :

Findŷ 0 2 W; such that for allq̂0 2 W0

D�
I � ÎH

( p;q)

�
ŷ 0; q̂0

E
=

D
ĝj ; q̂0

E
; (Q j

( p;q))

with ĝj de�ned by (38)and< �; � > the dual product
betweenV andV0.

� PROOF: It is easy to see that if̂y 0
pq is the solution of

(37), it is also the solution of (Q j
(p;q) ).

Let us show now the uniqueness. Letŷ 0 be a solu-
tion of

D�
I � ÎH

(p;q)

�
ŷ 0; q̂0

E
= 0; q̂0 2 W0 (43)

and let us show that̂y 0 = 0. The proof can be done in
three steps.

(1) We prove �rst that(I � ÎH
(p;q) )ŷ

0 2 W.

Let us remind that by de�nition

IH
(p;q) )y

�
�
�
S0

= y
�
�
�
S0

then

r
L

2p

p=LZ

� p=L

ÎH
(p;q)F yy (�;ky) dky = y

�
�
�
S0

:



The inversion formula (5.3) gives

r
L

2p

p=LZ

� p=L

I F yy (�;ky) dky = y
�
�
�
S0

;

which implies

Im(I � ÎH
(p;q) ) � W

and it is true in particular for̂y 0.

(2) We prove now that(I � ÎH
(p;q) )ŷ

0 = 0.

Given the step (1) and the relation (43), the
function

n̂0 = ( I � ÎH
(p;q) )ŷ

0 2 W

satis�es

8q̂0 2 W0;
D

n̂0; q̂0
E

= 0: (44)

By de�nition of V0andW0

8q̂0 2 V0; q̂0 �
L

2p

p=LZ

� p=L

q̂0(�;k) dk 2 W0

and then since (44), we have8q̂0 2 V0;

D
n̂0; q̂0

E
=

D
n̂0; q̂0 �

L
2p

p=LZ

� p=L

q̂0(�;k) dk
E

+
D

n̂0;
L

2p

p=LZ

� p=L

q̂0(�;k) dk
E

=
D

n̂0;
L

2p

p=LZ

� p=L

q̂0(�;k) dk
E

:

We conclude writing that

D
n̂0;

p=LZ

� p=L

q̂0(�;k) dk
E

=

p=LZ

� p=L

�
n̂0(�;x );

p=LZ

� p=L

q̂0(�;k) dk
�

dx

=
� p=LZ

� p=L

n̂0(�;x ) dx ;

p=LZ

� p=L

q̂0(�;k) dk
�

= 0

by de�nition of W. n̂0 is an element ofW � V, for
which the scalar product with any element ofV0van-
ishes, that implies that̂n0 = 0.

(3) We can prove now that̂y 0 = 0.

Indeed, the uniqueness of the problem (35)
gives

(i) ŷ � ÎH
(p;q) ŷ = 0;

(ii )

r
L

2p

p=LZ

� p=L

ŷ (�;kx) dkx = 0

+

ŷ = 0:

which can be summarized by

Ker(I � ÎH
(i; j) ) \ W = f 0g:

We know thatŷ 0 2 W and the result of the step (2)
gives

ŷ 0 2 Ker(I � ÎH
(p;q) ):

We conclude that̂y 0 = 0.

�

According to proposition 6.3, (Q j
( p;q)) can be

rewritten as

Find ŷ 0 2 W; such that for allq̂0 2 W0

a( p;q)(ŷ
0; q̂0) = `(q̂0); (Q j

( p;q))

where

a( p;q)(ŷ 0; q̂0) :=

p=LZ

� p=L

dkx

hD
ŷ 0(�;kx); q̂0(�;kx)

E

�

p=LZ

� p=L

D
K ( p;q)(kx;ky) ŷ 0(�;ky); q̂0(�;kx)

E
dky

i

`(q̂0) :=

p=LZ

� p=L

D
ĝj (�;kx); q̂0(�;kx)

E
dkx

(45)
whereK ( p;q)(kx;ky) is de�ned by (32) and
< �; � > is the duality bracket between

H � 1=2
kx

(S0) andH1=2
kx

(S0):

This is the problem we solve in practice.

7 Algorithm for the
resolution of (P )

We summarize the method presented in the previous
sections for the computation of the RtR operatorL
in the following algorithm :



1. Construction of the halfspace RtR operatorL H

(i) For each ky 2 [� p=L;p=L], resolution
of the cell problems (21)-(22)-(23) and
computation of local RTR operators (25),
T i j (ky). Computation of the other RtR
operators (31),I i;� (ky) which will be use-
ful for the step 2-(i).

(ii) For eachky 2 [� p=L;p=L], determina-
tion of the propagative operatorP(ky)
solving the stationay Riccati (ER

ky
)

(iii) Construction ofL̂ H using the expression
(28)

(iv) Computation of L H using the Floquet
Bloch Transformation and its inverse by
(16),

2. Construction ofL ( p;q) for each(p;q) 2 f s;ag2

(i) Build the incoming RtR operatoreI( p;q)

solving for eachj 2 H � 1=2
( p;q) (Si ) the vari-

ationnal problem (Q j
( p;q)),

(ii) Apply the relation

L ( p;q) = E( p;q) � eR� L H � eI( p;q);

whereeR is the restriction operator fromeS
ontoSi

0 andE( p;q) is the extension opera-
tor introduced at the end of Section 3.

3. Determination of the RtR operatorL from (9) .

Once the RtR operatorL is computed, the interior
problem posed in the bounded domainWi

�4 ui � r (w2 + �ew) ui = f dansWi ;

�
¶ui

¶ni + � Z ui = L
� ¶ui

¶ni + � Z ui � surSi ;
(P i)

can be solved.

We want now to compute the solutionu of
(P ) outside the bounded regionWi , de�ned,
thanks to the solutions of the interior and exterior
problems, by

u = ui ; in Wi

u = ue� j i � ; in We; with j i =
h¶ui

¶ni + � Z ui
i �
�
�
Si

:

whereui is the solution of (P i) andue is the solution
of (P e). It suf�ces to use the following algorithm
of reconstruction using essentially the solutionuH

of halfspace problems (P H) and the incoming RtR
operatorseI( p;q) involved in the caracterization ofL .

1. Thanks to the results of Section 3,j can be
decomposed by

j i = å
( p;q)2f s;ag2

j i
( p;q)

with

8(p;q) 2 f s;ag2; j i
( p;q) 2 H � 1=2

( p;q) (Si )

and by linearity:

ue(j i) = å
( p;q)2f s;ag2

ue(j i
( p;q))

with

8(p;q) 2 f s;ag2; ue(j i
( p;q)) 2 H1

( p;q)(4 ;We)

2. By de�nition of the RtR operatorseI( p;q),
8(p;q) 2 f s;ag2

h ¶
¶x

ue(j i
( p;q))+ �Z ue(j i

( p;q))
i �
�
�
eS

= eI( p;q) j
i
( p;q):

3. The solutionuH(y ) of the halfspace problem
(P H) can be compute semi-analytically for all
y 2 H � 1=2(eS), thanks to (20), so we have:
8(p;q) 2 f s;ag2;

ue(j i
( p;q))

�
�
�
WH

= uH�
eI( p;q) j

i
( p;q)

�
:

4. By symmetry arguments, we have �nally
8(p;q) 2 f s;ag2

ue(j i
( p;q)) =

uH(ỹ ( p;q)); in WH

ep S1
�
uH(ỹ ( p;q))

�
; in S1WH

eq S� 1
�
uH(ỹ ( p;q))

�
; in S� 1WH

epeq S1 � S� 1
�

uH(ỹ ( p;q))
�
; in S1 � S� 1WH:

where we have posed̃y ( p;q) = eI( p;q) j i
( p;q)

8 Numerical results

8.1 Discretization

From a numerical point of view, it seems that two
steps of the discretization of the problem are non
classical :

1. the approximation of the operatoreI( p;q) (for the
computation of each RtR operatorL ( p;q));

2. the approximation of the operatorsP(ky) and
D(ky) for eachky (for the computation of the
halfspace RtR operatorL H)



8.1.1 Discretization of (Q j
( p;q))

The choice for the discretization of the problem is
taken mainly because of the resolution of the non
standard integral equation (Q j

( p;q)). Indeed, a priori,

the discretization of (Q j
( p;q)) relies on

� the choice of an appropriate �nite dimensional
approximation space forW ;

� the construction of an appropriate approxima-
tion of the bilinear forma(�; �).

One has to take into account that

� The operatorK ( p;q)(kx;ky) is not known analyt-
ically and must be approximated numerically
(this is related to the resolution of the cell prob-
lems ans the approximation of the operators
I0;� (ky), I1;� (ky) de�ned in 31,D(ky)) de�ned
in (19) andP(ky) de�ned in (18) ;

� the approximation ofK ( p;q)(kx;ky) (which de-
pends smoothly on(kx;ky)) can be done only
for discrete values of(kx;ky) : quadrature in
(kx;ky) is required.

For this reason it seems to us that it is easier to work
in a space of functions generated by basis functions
which are tensor product, as we shall detail later.
Moreover, we need in principle to deal with two
constraints :

� the constrain of zero-mean value in thek-
variable appearing in the de�nition ofW ;

� the ky-quasi-periodicity in the y� variable
condition for the operatorsP(ky), D(ky),
K( p;q)(kx;ky),...

It appears dif�cult to take into account these two
constraints strongly in the approximation space,
especially if we want to work in the "(x;k)-tensor
product space".

We have chosen to take into account the quasi-
periodicity condition weakly by using a mixed
variational formulation and a mixed �nite element
approximation of the cell problems, which allows
us to construct approximate operators

Ph(ky) and Dh(ky) 2 L (Vh)

whereVh is a �nite dimensional subspace ofL2(S0)
(typically with piecewise polynomial functions).
Using appropriate discretization of the periodicity
cell problems, we can construct

I0;�
h (ky) and I1;�

h (ky) 2 L (Vh):

See Section 8.1.2 for more details. Finally, by con-
struction,

Kh
( p;q)(kx;ky) 2 L (Vh):

Then, we shall construct the approximation sub-
space ofV as a subspace of :

Vh = L2(�
p
L

;
p
L

;Vh)

and then the approximation subspace ofW as a sub-
space of :

Wh =
�

ŷ h 2 Vh;
Z

ŷ h(�;k) dk = 0
	

:

It suf�ces then to choose the same approximation
subspaces forV0andW0as respectively the ones for
V andW and to replace the duality product in (45)
by the scalar product inL2(S0).

The semi-discrete (iny) problem is :

Find ŷ 0
h 2 Wh; such that for allq̂0

h 2 Wh

ah
( p;q)(ŷ

0
h ; q̂0

h ) = `(q̂0
h ); (46)

where

ah
( p;q)(ŷ

0
h ; q̂0

h ) :=

p=LZ

� p=L

dkx

h�
ŷ 0

h(�;kx); q̂0
h (�;kx)

�

L2

�

p=LZ

� p=L

�
Kh

( p;q)(kx;ky) ŷ 0
h(�;ky); q̂0

h (�;kx)
�

L2
dky

i

`(q̂0
h ) :=

p=LZ

� p=L

�
ĝj (�;kx); q̂0

h (�;kx)
�

L2
dkx:

For the discretization ink, we divide the interval
i

�
p
L

;
p
L

i

into N equal intervals of length

Dk = Dkx = Dky =
2p
NL

; kl = lDk

Givenq 2 N, we introduce

PN;q =
�

w 2 L2(�
p
L

;
p
L

); 8l ; wj[kl ;kl+ 1] 2 P q;

p=LZ

� p=L

w(k) dk = 0
	



whereP q is the set of polynomials of degreeq.

Let us now introduce
�

qh
i (y); 1 � i � Nh

	
a basis ofVh

�
wj (k); 1 � j � Nk

	
a basis ofPN;q;

with Nk = N(q+ 1) � 1 and consider the approxima-
tion space of W

Wh;N;q = PN;q 
 Vh = span
�
wj (k)qh

i (y)
�
1� i� Nh;1� j � Nk

with dimensionNt = Nh � Nk.

Finally, we consider a quadrature formula in
[0;1]

Z 1

0
f (t ) dt �

M

å
m= 1

wm f (t m); 0 � t 1 < : : : < t M � 1

and introduce the quadrature points

km
l = kl + t mDk:

The fully-discret problem that we solve is :

Find ŷ 0
h 2 Wh;N;q; such that8i[[1;Nh]]; 8 j 2 [[1;Nk]]

ah;N;q;M
( p;q) (ŷ 0

h ;wjqh
i ) = `(wj qh

i ); (47)

where

ah;N;q;M
( p;q) (ŷ 0

h;wj qh
i ) :=

� 2p
NL

� 2
N

å
lx= 1

M

å
mx= 1

wmxwj (k
mx
lx

)
hNL

2p

�
ŷ 0

h(�;kmx
lx

);qh
i
�

L2

�
M

å
my= 1

wmy

N

å
ly= 1

�
Kh

( p;q)(k
mx
lx

;k
my
ly

) ŷ 0
h(�;k

my
ly

);qh
i
�

L2

i

`(wjqh
i ) :=

2p
NL

N

å
lx= 1

M

å
mx= 1

wmx

�
ĝj (�;kmx

lx
);qh

i

�

L2
wj (k

mx
lx

):

8.1.2 Discretization of the half waveguide
problem ( ˆP H

ky
)

For each quasi-periodky (typically the quadrature
points introduced in the previous section), we need
to construct discrete approximations of

P(ky); D(ky) and alsoI0;� (ky) andI1;� (ky)

The �rst two quantities require approximations to
the operatorsT i j

ky
, i = 0;1; j = 0;1.

We introduce a regular (for simplicity) 1D mesh of
S0 (and thenS1 by periodicity) made ofNh equal
segments of lengthh > 0. We introduce the same
mesh forS+

1 andS�
1 to keep the double symmetry

property of the periodicity cell. We approximate

H � 1=2
k (S0) ( resp.H1=2

aa (S�
1 )0)

by the subspaceVh of piecewise constant functions
on this mesh.

The approximate operators

T i j
ky;h; Ph(ky); Dh(ky) and alsoI0;�

h (ky) andI1;�
h (ky)

will be constructed as operators inL (Vh) and thus
are represented byNh � Nh matrices.

For solving the cell problems (21-22-23) (we have
2Nh problems of this type), we �rst rewrite them as
a (Ñ;div) �rst order system, useH(div) � L2 mixed
formulation and discretize the resulting variational
problem with the lowest order Raviart-Thomas
mixed �nite elements [27] on the doubly-symmetric
periodic mesh ofC (i.e. the “traces” of this mesh
on S0, S1 and S�

1 coïncide with the 1D mesh
introduced above).

The advantage of such a choice is that both
the traces of the scalar unknown and of its normal
derivative are degrees of freedom of the method and
both belong toVh, so that the operators

T i j
ky;h; I0;�

h (ky) andI1;�
h (ky)

are naturally inL (Vh).

To determinePh(ky), we solve the discrete problem

FindX 2 L (Vh) such that
T h(ky;X) = 0

r (X) < 1
(48)

where

T h(ky;X) = T10
ky;h

�
T11

ky;h

� � 1 X2 +
�
T11

ky;h

� � 1 T01
ky;h

+
�

T00
ky;h � T01

ky;h

�
T11

ky;h

� � 1T10
ky;h �

�
T11

ky;h

� � 1
�

X:

is a matrix quadratic equation.

The resolution of (48) can be done using one
of the two following methods (see [21] for more
details about these methods) :

(i) a spectral approach ;



(ii) a modi�ed Newton method.

The spectral approach (i) leads to solve the matrix
quadratic eigenvalue problem:

l 2T10
ky;h

�
T11

ky;h

� � 1 +
�
T11

ky;h

� � 1 T01
ky;h

+ l
�

T00
ky;h � T01

ky;h

�
T11

ky;h
� � 1T10

ky;h �
�
T11

ky;h
� � 1

�
= 0

with the condition

jl j < 1:

We can show that the solutions of this matrix
quadratic eigenvalue problem are associated by
pairs(l ;1=l ). We keep exactly thoseNh eigenvalue
and eigenvector pairs,f (l 1; j k

1); � � � ; (l Nh; j k
Nh

)g,
for which jl i j < 1, and discarding the rest (also
numberingNh).

One can also think about solving directly the
nonlinear equation (48) using a Newton's algorithm
for instance. The dif�culty is to take into account
the constraint about the spectral radius. That is why
we have proposed a heuristic modi�ed Newton's
algorithm where a projection step is applied at each
step of the algorithm. The algorithm we suggest
consists in constructing, from the initial guess
P0

h (ky) = 0, the sequencePn
h (ky) de�ned by:

� Compute dPn+ 1
h solution of the Lyapunov

equation :

T10
ky;h

�
T11

ky;h
� � 1

�
Pn

h (ky)dPn+ 1
h + dPn+ 1

h Pn
h (ky)

�

+
�

T00
ky;h � T01

ky;h

�
T11

ky;h
� � 1T10

ky;h �
�
T11

ky;h
� � 1

�
dPn+ 1

h

= T h(ky;Pn
h (ky)) :

� ComputeP̃n+ 1
h (ky) = Pn

h (ky) � dPn+ 1
h ;

� If r (P̃n+ 1
h (ky)) < 1, keep

Pn+ 1
h (ky) = P̃n+ 1

h (ky);

if r (P̃n+ 1
h (ky)) � 1, take

Pn+ 1
h (ky) = P̃n+ 1

h (ky)=r (P̃n+ 1
h (ky))

� Stop the algorithm when :

kdPn+ 1
h k

kPn
h (ky)k

is small enough.

The solutionPh(ky) is expected to be the limit of the
sequencePn

h (ky).

Once, Ph(ky) is determined, the operatorDh(ky)
is obtained using the discrete version of the �rst
relation of (26)

Dh(ky) =
�
T11

ky;h

� � 1�
Ph(ky) � T01

ky;h

�

Finally the approximation of the RtR operator
L w

h (ky) is obtained by

L h(ky) = T00
ky;h + T10

ky;hDh(ky)

and the approximation of the solution of (ˆP H
ky

) can
be constructed cell by cell using a discrete version
of (20) once we have the 2Nh basic solutions of the
cell problems (21-22-23),Ph(ky) andDh(ky).

For the approximation of the halfspace RtR
operator L H (resp. the approximation of the
solution of (P H)), it suf�ces to apply the theorem
5.8 (resp. the relation (14)) taking into account
the discretization of theky-variables introduced in
Section 8.1.1.

Since we do not have actual solutions to the problem
of wave propagation in a general locally perturbed
periodic media, we cannot say for certain that the
solution we obtain by following the procedure
described in the previous sections is indeed the
solution. However, we make comparisons to check
self-consistency in all the numerical examples.

8.2 Particular case of homogeneous
media

We �rst apply the procedure described in the
previous sections to the case of a locally perturbed
homogenous media, namely the case wherer p is a
constant. Note that for an homogeneous media, it is
quite original to use a square boundary to construct
the DtN operator.

We represent Figure 17(a) the sourcef whose
support is included inWi = [ � 0:5;0:5]2, the index
r p = 1 and we suppose the period of the media
equal to 1 (which means that all the computations
will be done in a periodicity cell whose size is 1).
Using the algorithm described previously, the RtR
operator can be computed and the interior problem
can be solved. We represent the interior solution



Figure 17(b) withw = 5 ande = 1. Thus, even
with a squared arti�cial boundary, we recover the
revolution symmetry of the solution.

(a) The source and the arti�cial boundarySi

-0.5 0 0.5
-0.5

0

0.5

(b) The solutionui in Wi

Figure (17): The sourcef on [� 6:5;6:5]2 (its sup-
port is included inWi = [ � 0:5;0:5]2) and the solu-
tion ui of in Wi(P i) (computed thanks to the con-
struction of RtR operatorL )

Finally to build the solution everywhere, we use the
algorithm presented in Section 7. Note that in this
case, since the source is with double symmetry,j i

is too : j i = j i
(s;s). Here again, we recover the revo-

lution symmetry of the solution.

-6 -4 -2 0 2 4 6
-6
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-2

0

2
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Figure (18): The interior solutionui

Figure (19): Its restriction toWH is computed thanks
to a halfspace problem.



Figure (20): Its restriction to this halfspace is de-
duced by symmetry.

Figure (21): The restrictions to the quarter plane cor-
responds thanks toE(s;s).

Figure (22): The solution in the whole space.

8.3 More general periodic media

We can apply now our algorithm to a general pe-
riodic media, whose refraction index is represented
Figure (23), the source is given in Figure (24). The
period here is equal to 1. After computing the DtN
operator, the interior problem can be solved and
we represent the interior solution Figure (25). We
use �nally the same algorithm as previously for the
reconstruction of the solution outsideWi (see Fig-
ure (26)).

Figure (23): The locally perturbed periodic media
with the arti�cial boundarySi .



Figure (24): The source whose support is compact,
with the arti�cial boundarySi .

-0.5 0 0.5
-0.5

0

0.5

Figure (25): The interior solutionui in Wi =
[� 0:5;0:5]2 for w = 10 ande = 0:1.

Figure (26): The solution in the whole space in the
case forWi = [ � 0:5;0:5]2, w = 10,e = 0:1.

8.4 Invariance with respect to the
choice of Si and C

The solution of the whole problem has to be inde-
pendant of the choice of the arti�cial boundarySi

and the periodicity cellC . One easy way to vali-
date the method is to change their size and check
that the solution is the same. For the same media
as previously, we choose a bigger boundarySi as
shown Figure (27). All the computations are done
in a periodicity cell whose side is equal to 2. The
new interior solutionui is represented Figure (28)
and the solution is �nally reconstructed in the re-
gion [� 6:5;6:5]2 as shown in Figure (29). We re-
cover the solution computed in the previous section
and shown Figure (26).



Figure (27): The locally perturbed periodic media
with the arti�cial boundarySi .

Figure (28): The interior solutionui in Wi =
[� 0:5;1:5]2 with w = 10,e = 0:1.

Figure (29): The solution in the whole space with
Wi = [ � 0:5;1:5]2, w = 10,e = 0:1.
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