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Abstract: We present in this chapter a review of some reasgarch work about a new
approach to the numerical simulation of time harmonic wagagation in in nite peri-
odic media including a local perturbation. The main dif ulies in the reduction of the
effective numerical computations to a bounded region eregpthe perturbation. Our ob-
jective is to extend the approach by Dirichlet-to-NeumadtiN) operators, well known in
the case of homogeneous media (as non local transparendégyuconditions). The new
dif culty is that this DtN operator can no longer be determihexplicitly and has to be
computed numerically. We consider successively the caagefiodic waveguide and the
more complicated case of the whole space. We show that theopé&kator can be char-
acterized through the solution of local PDE cell problenhg, tise of the Floquet-Bloch
transform and the solution of operator-valued quadratlimear equations. In our text, we
shall outline the main ideas without going into the rigorouethematical details. The non
standard aspects of this procedure will be emphasized andmcal results demonstrating
the ef ciency of the method will be presented.

1 Introduction restrict the computation around the perturbation.
A rst class of methods consists in applying an
arti cial boundary condition which is transparent or

Periodic media play a major role in applications, mapproximately transparent. Let us cite

particular in optics for micro and nano-technology
[18, 20, 23, 28]. From the point of view of ap- (i) the coupling techniques between volumic
plications, one of the main interesting features is methods and integral representations or inte-
the possibility offered by such media of selecting gral equation techniques [19, 25, 14, 17]
ranges of frequencies for which waves can or _ ) o

cannot propagate. Mathematically, this property is(il) the DIN approaches which consists in comput-
linked to the gap structure of the spectrum of the  Ng exactly the Dirichlet-to-Neumann operator
underlying differential operator appearing in the  @ssociated to the exterior medium, provided
model. For a complete, mathematically oriented  that the geometry of the boundary is properly
presentation, we refer the reader to [23, 24]. There  chosen (typically a circle in 2D)

is a need for efcient numerical methods for(
computing the propagation of waves inside such
structures. In real applications, the media are not
perfectly periodic but differ from periodic media
only in bounded regions (which are small with
respect to the total size of the propagation domain).
In this case, a natural idea is to reduce the pur&lethods (i) and (ii) are exact (up to numerical

iii) the local radiation conditions at nite distance
[8, 2], constructed as a local approximation of
the exact non local condition at various orders
with respect to a small parameter, typically the
inverse of the frequency.

try to take advantage of the periodic structure ofand its accuracy improves where the order of the
the problem outside: this is particularly of interestcondition increases or the arti cial boundary goes
when the periodic regions contain a large numbeto in nity. However, none of these methods can
of periodicity cells. be applied or extended directly to general exterior
periodic media because they use the homogeneous
In the case where the unperturbed medium isature of the exterior medium (explicit formulas are
homogeneous (in some sense, a periodic mediumsed for the solution of the exterior problem in (i),
with an arbitrarily small period), this is a very (ii) and (iii), the knowledge of the Green function is
old problematic. Various methods can be used taised in case (ii) and separation of variables is used



in case (iii) ). by solving local cell problems an operator valued
stationary Ricatti equation. In a second paper [13],

The second approach consists in surroundingve proposed an extension of the above work to the

the computational domain by an absorbing layer ircase where the unperturbed media is periodic in

which the PML technique [3] is applied. Physically the two directions. We presented the conceptual

the method can be interpreted as letting an inciderdspects of the method for the construction of the

wave from the computational domain enters theDtN operator and we exposed the main theoretical

layer without re exion and absorbs the wave issues and results.

inside the layer preventing it to come back in

the computational domain. This principle is notThis chapter is devoted to a general presenta-

adapted a priori to periodic media for which a wavetion of the method of [13, 12] adapted to the case

leaving the computational domain will interact of a RtR (for Robin-to-Robin) boundary condition:

with heterogeneities of the medium up to in nity. instead of relating the Dirichlet and the Neumann

That is why the standard PML technique cannotraces of the solution, we want to relate two

work in this case (see however the pole conditiordifferent Robin traces of the solution, typically

techniques that can be seen as a generalization of

the PML method in the case of hon-homogeneous fu Zu

media [15, 16]). fin '

It seems that there are very few works in theWhereZ is a non-zero impedance, that are related

same spirit in the mathematical literature for thethrough a transparent RIR operator. Such Robin

case of periodic perturbed media. A problemtraces naturally appear in non overlapping domain

similar that have some similarities with the one Wedecomposnmn methods for solving the Helmholtz

consider in this paper is the numerical computationequatlon [4, 5, 6]. They are also used in the context

of localized modes (non trivial solutions of the of periodic media in [7]. From the numerical point

- . of view, one of the interest of RtR operators is that,
propagation model in the absence of any source

; .__Contrary to DtN operators for instance, they are
term) that may appear for specic frequencies . . .
. ounded operators with bounded inverse and their

due to the presence of a local perturbation o

the periodic media (see [9, 10, 11] for existencedlscretlzatlon leads to well-conditioned matrices.

results). The supercell method analyzed [29] hafzor the sake of conciseness of the presentation

similarities with the radiation condition at nite . .

; - S . : .~ _we shall restrict ourselves to the exposition of the
distance (i) - it cpnssts n ”.‘a"'”g compu-tatlons n amain ideas and results and to illustrate the method
boundeq domain of large Size, the resultlng.solutlothough numerical results. On the other hand, for
converging to the true solution when the size goes " cake of rigor, we have chosen to make précise

to in nity. Note however that in this case as the . L :
. . . .the functional framework inside which the argu-
localized modes are exponentially decreasing, this

: . ; ments we shall develop can be completely justi ed.
convergence is exponentially fast with respect tc1—|owever most theorems will be stated without
the size of the truncated domain. !

proofs. The reader can nd these proofs together
additional details in [21, 13, 12]. Moreover, the
functional analysis makes the presentaton of the
method involved but it can be omitted at the rst
reading.

The notion of DIN maps already appears for
instance, in the works of T. Abboud [1] for the
diffraction problem by periodic gratings or of J.
Tausch [30] for periodic open waveguides. How-
ever in these two cases the DtN map is used to deil : : _

. . . “Let us also mention that, in order to avoid math-
with the unboundedness of the propagation medium

. L ... ematical dif culties, we consider the case where
in the direction(s) transverse to the periodicity : . Co .
direction(s). the propagation medium is slightly absorbing, the

absorption being quantied by a small positive
parametere > 0 (see section 2). The challenging

In a rst paper [21], we treated the case of IO_question of studying the limit case whentends

cally perturbed penoc_ilc wave_gu@e: typlcally theto 0 (i.e. the limiting absorption principle) is still
unperturbed propagation medium is bounded in one .
an open question to our knowledge. However

direction and periodic in the other. We proposed 3he method that we present here can be formally
numerical method for determining DtN operators ) : .
extended to non absorbing media by using the



heuristics proposed in [21, 12] for the case of O O O\/\p O
periodic waveguides. Another advantage of RtR W !
conditions is that they seem better adapted to the O O O n

development of a numerical limiting absorption
principle, which is the object of a future work. O O O O O
O OO OO

Figure (2): Geometry and notation.

C

2 Model problem

The model problem that we consider is the propaga-
tion of a time harmonic scalar wave in a 2D periodic

; 5 . 2. The index of refraction satis es the following
medium,W= R<, with a local perturbation. More

: conditions:
precisely, we shall assume that the geometry as well
as the material properties of the plane a@ndy (H1) O<r rx) rs+;
periodic except in a bounded region (see Figure (1)
for an example). Speci cally, we want to solve the (H2) rp(x Ly L)= .rp(x; y); 8(xY);
Supdr rp) W
O0O0O00O0O0
0000000 3. The support of the sourdeis contained inW.
O00000O0 . : .
> 4. eis a physical parameter, typically small, that
000 (@} 00O represents a slight absorption in the medium.
O00000O0 We shall assume that> 0.
0000000 It is well known that the problemR) admits a
O00000O0 unique solution inH(4 ;W), the closed subspace

of functions inH(W) whose laplacian is ih?(W).
Figure (1): Example of domain of propagatiow:
the functionr , takes different values in the white, In order to compute numerically the solution,

the light gray and the gray parts. our goal is to characterize the restriction of the
solutionu to W, that we denote!' via a transparent
2D Helmholtz equation boundary condition 08'. Instead of looking for an

exact DtN condition as it is done in [13], we want
Du r (w?+ ewyu=f; inW=R? (P) towrite an impedance-like boundary condition. To
be more precise, let us de ne the impedance

under the following hypotheses: ;

p—— e
1. The local perturbation to the periodicity in the Z ZX):=w r(x) 1+ " Q)

domain of propagatiow/= R? is contained in-
side the bounded regioW. In We= W nW

the periodicity is along the andy directions
with the same periotl. We denote byC the
reference unit periodicity cell

with the convention Irﬁ z> 0 andn' the unit nor-
mal vector which is outgoing with respect\té. We
wish to relate two “Robin traces” af' alongs',

namely
co' LL Y
B 2’2 e + ZU; the outgoing trace af
Without loss of generalityV is chosen to be a T i ; ; i
square of the sgme sizeg\; i i the incoming trace of
i h, Troughout the rest of this paper, this kind of bound-
f— L . L .
W= 219 ary traces will be symbolized by arrows whose di-

. . _ rections indicates what type of trace (outgoing or
The boundary ofV is denoted byS' = TW. incoming)is considered. We look for an operdtor
See Figure (2) for notation. Robin-to-Robin or RtR, acting on functions de ned



onS' such as the transparent boundary condition for he notion of double symmetry will be explained in

u' is written section 3. This situation is often met in the appli-
Tu _ N i _ cations. The method can be extended to the cases
e + Zu=1L ™ + Zu onS: (2) where (H3)is relaxed ( see the appendix B of [13]).

To characterize, at least in an abstract way, the op-
eratorL, it suf ces to write (P ) as the transmis-

sion between!' to u®, the restriction ofi to W and 3 Double symmetry and
rewrite the standard transmission conditions using related results

Robin traces ofi® andu', namely

e i We consider now a speci ¢ situation where the ge-
fu o _ fu i . . . - .
e + Zw = o + Zu ometry and material properties, in addition to satis-
e . au i (3)  fying periodicity along the lines andy, must satisfy
e + Zuw = o + Zu some symmetry properties.

(u® and u' exchange their outgoing and incoming
Robin traces) wher@® = n' is the unit normal 3.1 General de nitions
vector ofS' outgoing with respect ta\f.
We introduce the two diagonal lind3 = f(x;y) :

From (2) and (3)L be de ned as x=ygandD 1= f(Xy):x= yg. The symmetry
L L acrosd; will be denoted bys; and acros® 1 by
L:H %) ! H 2(5')1] S 1. See Figure (3).
j 71 Lj = —Uu(j)+ Zu(y) ;
/ J fine ) ) S' A subsetO is doubly symmetric if, the origin

being chosen as the barycenter@fit is invariant

whereu®(j ) 2 H1(4 ;WP) is the unique solution of -
through the transformatior® andsS 1 .

the exterior problem posed & with non homoge-
neous incoming Robin conditions &, namely
D1

D1

4 W rp(wP+ ew)u®= 0 in W
[S)
fu® . G
W-'- ZW= J on S
The notatioru®(j ) indicates the dependence of the
solution to P €) on the incoming Robin boundary
data. The RtR operatdr maps the incoming Robin
boundary data of(j ) onto its outgoing Robin
boundary data.

We derive a method for the characterization of
the RtR operatot and we show that it can be
characterized through the solution of local PDE Figure (3): The symmmetrie andS ;
cell problems, the use of analytical tools such as

the Floquet-Bloch transform and the solution of

operator-valued quadratic or linear equations. Ve Will denoteG;;i 21 0,1;2;3g the four isomor-

phic sets :

\
We shall restrict ourselves to a particular situ- 0=0 Q
ation that makes the presentation of our method
simpler. More precisely, we shall consider the casavhereQj;i 2 f 0;1;2;3g are the four quadrants of
where the periodicity celC and the boundar$  R? represented in Figure (4).
are squares (as indicates previously), that implieé functionn: O! C is called doubly symmetric
that they are doubly symmetric and when unchanged after re ection acrd3g andD 4

(H3) the restriction of the function, to C is a func-
tion doubly symmetric. n=n S =n S



Q1 T T T 1
1| | I |- X 1] | T 1

0 Q 1 -1 -1 -1
2 0
2 2 2 2
L(SS) I‘(a;S) I‘(saa) I‘(a:a)
Qs Figure (5): Functions im(zp;q)(O), o=[ 11
Figure (4): The four quadrants oR?, Q;;i 2
f0;1;2;3g
In the sequel it will be useful to de ne restriction

] to a subsetfOy; 7O of functions de ned in

3.2 Functlongl spaces on doubly H 12(§0) or H(p_l;)z(ﬂo)_ This is a slightly
symmetric sets delicate issue for an analytical point of view.

Let O be a doubly symmetric open set R? and -

H = HP(0): p2 NorH = H(4 ;0). The spac#i Let Rbe the restriction operator de ned by
can be _decomposed as the sum of f01_Jr subspa_ces R (1290 | L2 10,
of functions that are symmetric or antisymmetric

acrosd; andD ; ( See Figure (5) for examples) f 7 f 70’
H(O)= Hsy Hisa Hag Haay () por all(p;q) 2 f s;ag?, one checks thaR is an iso-
morphism frorrpr;q)(ﬂO) ontoL2(0y).

where
V2 Hie , v= +vV = +v S g 2
(s9) St 1 Let denoteR ) the restriction oRto L(p;q)(ﬂO).
v2 H(a;a) , V= vV § = v S g
Its inverse is an extension operator, which can be
V2Hgg » V= +V §= vV Sy given explicitly thanks to the symmetries. Given
V2 H V= v S,= +v Sy fo2 L2(100):
(a9 o - - 1
Evafoigo, = fo;
(ma)lolo 0
Note that this spaces are orthogonal.fn o0 _ .
Epafoifo, = &fo Si;
Given (p;q) 2 fsag?, we dene the closed Epgfoigo; = &fo S 1
1=2 =
subspacéi . (10) of H?(70) by Eqpgfofo,= &fo S S 1
n 0
HZ2 (10)= u : u2HL _(O) with s= 1 ande; = 1. For each(p;q) 2 f s;ag?,
(G 70 (P0) .
we de ne the following spaces
and the closed subspask 2(10) of H 172(10) _ n B 0
pia) 1=2 — . 1=2
by Hip (T00) = Ripaf5 F2 Hig (T0)
n o . .
1=2 _ u 1 ) } equipped with the graph norm. One can show that
Hipq (T0) 10’ U2 Hipg(450) - R(p:g) iS an isomorphism from
REMARK 3.1 1=2 1=2
Despite the notation, H(p;q)(ﬂo) onto H(p;q)(ﬂOO)
1=2 1=2 ) whose inverse i& 4 and that
Hipa (TO) ( Hipgp(T0)” P9
By de nition, we can prove that (4) holds fdi = H(lgé)(ﬂoo)
H2(70) andH = H 72(0) with n o
} ) fo2 H2(100); E/parfo 2 HE2 (T0) -
_ gl oy 12 . i G AR ()
Hip) = Hipg)(TO) - and Hipgy = Hipq) (10):
1=2
Next, we extend the operatBy, to H(p;q) (70).



This can be done by duality, noticing th&t;( is
the inner product in2(G))

1
Ripaf:yo 0, 4 f BpaYo 70’ ©)
wheref 2 L(zp;q)(ﬂO);yo 2 L%(70o).

This suggests an extensionRf, ) as an operator

1=2 12 0
R 2L Hipg (TO): H (T00)

as follows
1=2 . 1=2 .
8f 2 H(p;q) (0): 8yo2 H(p;q)(ﬂo")'
D E D E

1
RipafiYo 0, 4 fiEpaYo jo' (6)
Thus, introducing the subspace cb‘f(lgz)(ﬂoo) e

Hpe (100) = Ripg Hip (T0) & (7)

equipped with the graph norrR,.) is an isomor-
phism from

1=

H(p;q)z(ﬂo) onto H(p:lqz)z(ﬁo‘)):

ConverselyE ) is extended as an operator

1=2

(pg (TO0):H 9

Bpg 2L H (wa) (T0)

using :
1=2 . 1=2 .
8y 2 H(p;q) (”00)1 8f 2 H(p;q)(ﬂo),
< EpqYif >10= 4< ¥;Rpof >10,: (8)

REMARK 3.2
We can easily see that

Higg(T00) = H2(f00);

and HZ2(100) = Hoy (100)

using the notation of [26] and

Hiza(100)  HZ5(T00)  H 2 (1100)

1=2 1=2 1=2
and H(a;a) (700) H(S;a) (700) H(S;s) (700)

with continuous injections.
8(p;q) 2f s a0

1=2 1=2 0 1=2 0
Hipa (TO0)  Hip(TO0)™  Hiaz) (00)

Finally, we have

3.3 Physical assumptions and
related decomposition of L

The setsC, W andWE are doubly symmetric in the
sense of Section 3.2.

In the following, we will suppose that the re-
striction of r, to C is a function satisfying double
symmetry. Figure (6) presents some examples of
media possessing double symmetry.

OOO000O ODOOOO ©9¢¢9¢
OOO0O00O ODOOOO ©9¢¢¢
OOO0O00O ODOOOO ¢©9¢¢¢
OO0OO0O00 DOOOO ¢©90¢0¢
OO0OO0O00 DOOOO ¢©90¢0¢

Figure (6): Examples of media possessing dou-
ble symmetry : the functiom is a constant re-
specti/bin/bash: respecti: command not found vely
in the dashed and the white regions.

Using properties of the laplace operator, we can
show that if the incoming Robin daja has given
symmetry or antisymmetry properties, the solution
ue(j ) of the exterior problemR €) satis es the
same symmetries. Then, it is easy to conclude that
L preserves symmetry and antisymmetry:

THEOREM 3.3

For (p;q) 2 f s;ag?, L is a continuous map from
172, o 122/

Hipa () 10H(q (S).

This means thatif 2 H 72(S') has the decompo-

sition :

f= & fpa fpo2 H(p;lqz)z(si);
(Pia)2f siag?
then
Lf=aiLpaf (i
where
Lipa = Ly 125y 2 L (Hag (S)iHig ()):

Hence we can writé in block diagonal form:

2 3
Lgg O 0 0

_ 0 Lig O 0 é _
“g 0 %)Hm o 5° ©
0 0 0 Ly
Therefore characterizing and computih@mounts
to characterize and to compute each ofthg's.
For this, we will use a factorization &f ., that we
construct in the next section.



4 A factorization of L pq

The characterization df , ) is based on the factor-

ization as the product of two operators. To do so, we WP
need to introduce some additional notation, summa-
rized by Figure (7). u®(j ) " g
s Gy -

Oweo 0|0 WH

ONON®) p S S hﬂniue(j)+ Zue(f)I )

O Ole [0 wlso s, w R

O 0 0|0 °

O O O O e ll?(p;q)

h

[
Figure (7): 2D-plane medium. Rogl = BG)+ Zu() .

..
We shall divide the bounda§= W of the half- v
spaceW! into three parts:

€=8 [ S[ & (10)
S
8 = x:% ¥; % ;
N L L L | Figure (8): De nition of the RtR operat®,,-
where | Sg= x= > > Sy
&t = x= L E;+¥ : The computation of these operators will be dis-
2 2 cussed in Section 6. Sin@® = S'\ &, we have
formally
4.1 The RtR operators fpq). 8j 2 HX(S); fpqi =j on So

We introduce the operator which maps the incomin

tracej on the squar&' of u®(j ) (i. e. the boundary (\;Nh'Ch can be stated more rigorously

data of(P €) into another Robin data along another ) ) 122

boundary, namely the incoming trace &j ) on Rfpa) = RpaJ 2Hpg (S0); (A1)

S, as illustrated by Figure (8). Since the incoming

normal vector of\ is nothing but, this gives : where we have de ned another restriction operator

R:L%(8)! L2(Sy):
B:H XS) | H 72(§)
h q i
=U0)+ Ze()
x s extended to an operator

Ry =Yg
j 7

and the associated operators: _
P R2L H ¥2(8):HY2 (S0)°

(a33)

Ro = P, 2 2 L (Hipg (S)iH 7(E):

Hipay (8 by duality as we did foR ) (See Section 3.2).



4.2 The halfspace RtR operator L". (see gures (8) and (9)). Technically, the proof re-

lies on the uniqueness of the solution Bf ('), see
We de ne the halfspace RtR operatof as follows [13, 12] for more details

H . 1=2 1=2
L™ :H S ! E' ) i THEOREM 4.1
H
12, qiy 122, i
associated with the half space problem with incom- Hipg (S) into H;"(Sp)
ing Robin boundary conditions

DUt rp(w?+ ew)u=0; inW

and one has the factorisation

_ H .
P Lipa = Epa R L7 Rpo (12)
—+ zu=y: onS

X In (12), the two extension and restriction operators
E(p.q andRare trivial operators. However, we need
to have a numerical method for computing, at least
approximately, the operatoté*andﬁp;q). The next
two sections are devoted to a characterization of
these operators that lead to a numerical method.

whereut(y) is the unique solution it1(4 ;WH).
See Figure (9).

h i
T(y)+ zdy) =y

NN 5 Computation of the
! uH(y) halfspace RtR operator LM
|
BN 5.1 Technical tools
wWH

We recall the de nition and more useful properties
Je of the Floquet Bloch Transform (see [22] for a more
complete exposition) of function of one variable.
This transform maps a function g R into a func-

lLH tion (y;ky) 2 K where
K_i EEh [ B-Bh-
h i 22 L'L
Ly = fd(y)+ Zui(y)
s By de ntion, ky is a dual variable or a wave number.
I’"_k y DEFINITION 5.1
| u(y) The Floquet Bloch Transform (FBT) with periad
b N is de ned by ( see [22])
wH F:Cf(R) ! L2(K)
Ne f(y) Lo fyk;
: " with
Figure (9): De nition of NtD operatot_H. P
fy= o & T+ e ™ (13)
4.3 The factorization of L g P 2z

The important result concerning the factorization ofWhereCS‘ (R) is the set o ¥ -functions with com-
the desired RtR operatar,,) is the following the-  pact support.

orem whose proof is formally a consequence of the i .
construction of the operators Note that the sum in the de nition of the FB Trans-

formation is nite because of the compact support
L" and §pg of f.



PROPOSITION 5.2 such that
The FB Transformation extends to an isometry be-

tweenL*(R) andL*(K) : p.p.x2 [%;+¥[; (Fyu)(x, ; )=F u(x):
: 2(pR)2- : - £
8(f9) 2 L°(R)5  F fiFg L2(K) ~ f9 L2(R) It is easy to see théeft y is an isomorphism from

2 ; 2 - - =l
This identity allows us to extend uniquely theL (W) into LW ] p=L;p=L)).

operatorF by density to an isometry frorh?(R)

We want to know, now, how the Floguet Bloch
to L2(K). d

Transform can extend to every spaces appearing

naturally in the study. We need then to introduce
" spaces of functions on the domaM' of so-called

ky quasi-periodic functions{, being a parameter in
PROPOSITION 5.3 ] p=L;p=L[. We start from smooth quasi-periodic

The operatoF is an isometric isomorphism from functions inW":
L?(R) intoL?(K) whose inverse is given by

i h i
8f2 L%(K); p.py2 L=2L=2; 8n2Z;

The most important formula for us is the in
version formula:

n

¥ — U= (i G0 ¥ :
Co(W") = u= Gjw,; G2 C¥(WY);

0
aoxy+ L) = et axy) -
"T7¢
(F f)(y+nL)= ¢ f(y: ket dk: LetHkly(WN) be the closure dti(‘y(W’V) in HY(W").
n 0

We shall use in the sequel the following properties Hig(W") = u2 H'(W"); ujs- = e“" ujs
of the FB transformation (the proofs are straightfor- ) ) . .
ward and left to the reader. See also [22]). Thes¥here |nl_';he+last eqllelty we have identied the
properties make the FB transformation a priviligiedSPacesi—=(S") andH==(S ).

tool for the analysis of linear PDEs with periodic L y
coef cients. LetHky(4 ;W") be the closure dtky(W’V) of

n 0
PROPOSITION 5.4' _ _ Hi(4 ;WY) = u2 HY(WY):Du2 L(WY) :
The FB tranformation has the following properties

1. it commutes with the differential operators, in O €quivalently

the sense that n
H|}y(4;W"’)= u2 Hi(4 ;wv),
N

)= o~ Fy 0
dy” 1Ty fu kL TU
—(xy+L)=eY —(xy) :
| | | ﬂy( y+L) ﬂy( y)
2. It diagonalizes the translation operators
where in the last equality we have identi ed the

(tay)(y)= y (y+aL) spacedy; (ST)%andHgy (S )°
+
F (tay)(Y;K) = e F y (y;K); (%K) 2 K: 125 ) |
The spacet-lky (Sp) is de ned by
3. It commutes with the multiplication by a pe- 1=2

riodic function, in the sense that mhis al- Hky
periodic function

(So)= & HEWY)

whereg 2 L (HY(W"); H¥(Sp)) is the trace map
F(my)(y;k= myF yy:K; (BK2K: onSp:

Next we de ne the partial Floquet Bloch Transform 8u2 HY(W"); gu=u s
inthey direction in the halfspaca/!
i h HI2(S) is then a dense subspacetf2(So).
Fy: LW 1 2w 28 iy (50 ° (%0

uxy) 7' Fyxyiky) Moreover, the injection fromHlfyzz(So) onto



H172(Sy) is continuous. Finally, we can extend by duality the de nition of

1=2 1= F y to the spacél 172(8) introducing the dual of

We d H the dual oH . 1=2 .
e de neH, (Sp) as the dual o Ky (So) Hor B;p 5
Finally, the trace application 1=0

Hop BE S =

@2 L (HY4 ;W HE (S0)9)
G212 BB HEA(Sy) = :

de ned by :
o}
8u2 H(4 ;W"); gu= % o fora.eky2  BiP;0(;k) 2 H™(So)
is a continous application from DEFINITION 5.6

Lety be inH 172(8), the following application{
. > is the duality product betwedn 72(8) and
Moreover, we can show that H(§))

Hy, (o) = @ H (4 ;W)

We can now state the following results.

Hi (4 ;W") onto Hkylzz(So):

STy
is a continuous linear application of

1=2 p.p
H T S0
THEOREM 5.5 % L'L

. . . 1 . )
F y is an isomorphism fror*(W) into because of Theorem 5.5. The theorem of Riesz rep-
resentation implies then

1=2 p.p

1 . -
Wy BiE W=

n 9y 2 H =T Sos hii=hysj
~ QP
az2L?  B;BiHY(wWY) = L'L
0 where the rst duality product is between
fora.eky2  2;2:0(;k) 2 HE(WY) ;
y 1=2 p.p 12 p.p

equipped with the norm af*  2; 2;H1(WW) .
and the second one is between

F y is an isomorphism froril'(4 ;W) into ~ ~
’ H 12(8) andH2(®):
Hho 4 BB W -
0 Finally, we de ne the FBTF y inH %(8) by

a21%  2;R:HY(4 ;W) = 8y 2 H 7(8);

) A -
fora eky2 BB ;0(k)2 HE(4 ;W) Fy =y 2He "  Tif

which coincides with the classical de nition in
L2(8) (see Proposition 5.2). Similarly, for any

. 1= PP
V2P L

equipped with the norm af  2;2;HY(4 ;W) .

F y is an isomorphism frorm172(8) into
1=2 . —
WP S -

n
f2L BEHS) =

So ;
we de ne by duality= , 'y inH 17(8).

5.2 Reduction of the halfspace

0
fora. ek, 2 2R :j (k)2 Hklyzz(so) : problem to half-waveguide
, . roblems
equipped with the norm P
Z o In this section, we reduce the solution of the halfs-
ki k? o = Ki" (k) 1 dk: pace problemR ") and thus the characterization of
Hor p=L Hy " (S0) LH to the solution of a family of a half-waveguide



problem inW" (See Figure (7)) parametrized by the THEOREM 5.8

wavenumbeky.

Letu(y) be the solution of@ ") andF, uH(y)
its FBT in the variabley. Applying Fy to (P H

The halfspace RIR operatof is given by:

LH=F,* B" F, (16)

and using Proposition 5.4 one easily sees that eadihereR™ is given by(15).

FyuH(y)( ;ky) is the solution of a waveguide

problem. More precisely,

THEOREM 5.7
For eactky 2]

p=L;p=L[,

Oy == Fyu(y) (k)
is the unique solution irlt-llfy (4 ;W) of the half-
waveguide problem

D] rp(w?+ ew)dll = O inWY

h T Hi
r kt Z U So: Yy

wherey, = ¥ (k) 2 Hkylzz(So):

Hence to determine the solutiaf!(y) of (P 1),
we compute for alky 2] p=L;p=L[ the solution

" H
G

ag‘y(yky) of (PAkHy) and use the inversion formula in

Proposition 5.3 8(x;y) 2 W¥; 8n2 Z;
r TZ’%
2p

£

(14)

Let us remind that the halfspace RtR operatfris
denedby:8y 2 H 172(8);

h
LHy =

u(y)Ocy+ L) =

1y woo
ﬂxu (y)+ Zu'(y) ¢

Let us introduce the RtR operator &j for the ky
quasi periodic half-waveguide problem, namely

(So)

such that for any,, 2 Hkylzz(So)
h q i
LY (k)Y = —Xa;' +

1=2
LY(g) 2L H

whereu is the solution oPAkHy. Let
PR2L Hot? 1 p=Lip=Ll So

such that, fol in HQézz 1 p=L;p=L[ So,
(B y) (k) = LY(k)Y (iky):

The link between. " andPH is given by the

(15)

O (V) (xy) ™" dk;

5.3 Solving the half-waveguide
problems (P k';)

Here we discuss the determinationlof(ky). We
shall use the division of the half-waveguide into pe-
riodicity cells separated by vertical segments (See
Figure (10) ) :
¥
W = t Cn;
n=0

Ch:= C+(nL;0); a7

The segment$, = Sp + ( nL;0) can all be identi-
ed to the leftmost oneSy [ L=2;L=2] and the
cellsC, can all be identi ed to the rstcellC; = C.

st s S st
[eleT ol
y _ n
I S, S
-

Figure (10): Notation for a half guide

By periodicity in x, the construction ofug in
WY will reduced to the knowledge of two linear op-
erators ( see Figure (11) for a schematic de nition).
The rst one, called the propagation operator, is
denotedP(ky) and de ned by
P(k) : H, " (So) !

yi, T

1=2

Hy,"(So)

(18)
—of+ zaol!
x ™ Vo5
One can show th&®(ky) is compact (using interior
elliptic regularity for ut;), injective (using an
argument of unique continuation) and has a spectral
radius less than 1 (because of ttfenature ofu};'y).
See [21, 12] for more details for the proof of these
results.

The second operatdd(ky), is de ned by

1=2 1=2

D(k) : H " (So) ! H " (So)
. T " (19)
Y, 1! Wuky+ Zuky Sl:



P(ky) Yk,
E— e
0l (Vi) a s
1
D(ky) Yk,
0l (Vi) a s
1

Figure (11): The operatoi3(ky) andP(ky).

Using the periodicity of the problem, one easily tha

7.

H
+
ot 2
T n
-+

x

H
Uy o
i

za;‘y

= P(k)! 1y,
Sj1

o = D) P(k)! 1y
)

Then, by linearity, we have for any 1,

Gk . = € kiP(k)!
J

+ e k;D(k)P(k)! 1yi) ; (20)

D(ky) i,

)

S

P(ky) Y,

S So

D(ky)P(ky)Y k,

G0

S S

Figure (12):u{;:,()7ky) in the rsttwo cells.

where for an)yky 2 Hkylzz(So), the two fonctions

eo(ky;yky) and el(ky;ka);

namely the unique solutions k'(C) of the follow-
ing elementary cell problems posed ©n

De rp(w?+ ewe = 0;inC; (21)
satisfyingky quasi-periodic boundary conditions on
S; etS;:

e = el

e ;
S S
e ogufe o #P
Ty si Ty s,

and nonhomogeneous incoming Robin conditions
on Sy etS; (see Figure (13) for an illustration):

e’ o _o . 1€ o -
W+ Ze = Yy W+ Ze 1—0,
fe! P _ o
W"' Ze’1 SO—O, W"' Ze’1 Sl—yky,
(23)
Formula (20) shows that the computation of the
Y, 0
eo(ky;y’\ky)
So S1
0 Y,
el(ky;y’\ky)
So S1

Figure (13): The functiong!(ky; ¥i); j = 0;1

solutionu*k*y is achieved through the characterization
of the two operator®(ky) andP(ky). At this stage

of the exposition, the de nitions of these operators
rely on u“ljy(yky) which is a solution of a problem
posed in an unbounded domain. We shall see in
the following how to determine these operators by
solely solving local problems of the type (21, 22,
23), which is one key point of the method.

Note that the relation (20) ensures thl%t()?ky) is

the solution of the Helmholtz equation inside each
cell Cj. To make the characterization complete, we
have to write that the correct transmission condition



acrossS;, that we can write as

AH AH
ﬂuky AH ﬂuky ~H .
—+ ozl = X+ oz ;
x e x Y Cir1
H H
ﬂuk)’ + ~H — ﬂuky + ZOH
ky ky
ﬂ 4 Cj ﬂ y j+1

Tkly1 is invertible, see [12])

Tkio Tki,l 1P(ky)2+

TO T T tle gt t opek)

11 1101_ A
+ Tky Tky =0:

If we de ne the local RtR operators such that for Actually, this equation characterizes uniquely the
any incoming Robin data (see Figure (14) for aoperatoP(ky):

schematic illustration)

Vi, 2 H "(So);

R T R R
TV = @) 20
R 7 R N
T = @iy ZkivK)
R T R R
TeW = e iyi)+ Ze(kivy o
R 7 R R
g = g livi)+ Zekiyi)
(25)
the reader can easily that the relations of continuity
T%(ky) ¥ i, <=t — TOY(ky) Vi,
eo(ky?)?ky)
So S1
T10(ky) ¥ i, <=t — T1Y(ky) Vi,
el(ky?)?ky)
So S1

Figure (14): The local RtR operatoTéyj.

(24) for j = 1 are equivalent to

Tot+ Te'D(ky) = P(ky)

D(ky) = TP(ky)+ TOD(ky) P(k,): (26)

EliminatingD(ky), the operatoP(ky) is then a solu-

THEOREM 5.9 (CARACTERISTIC EQUATION )
The operatoP(ky) is the unique compact operator

1=2
X2 K Hky (So)
satisfying the condition

r(Pky)) <1 (27)

which solves the stationary Riccati equation:

T (k;X)= 0; (ES)

where
T ()L H'S) | L H (S

and is the quadratic map given by

1 1
T (k;X)= T Tt “X%+ Tt Tt

lX:

00 01 +11 1+10 11
ol Ty Ty Ty Ty
OnceP(ky) is determined solving the stationary Ri-
catti equationD(ky) is obtained using the rst rela-
tion of (26) :

1

D(k) = Tot * P(k) T

we build cell by cell the solutiong using (20) and
nally using again (20) forj = 0, we see that
LY(ky) = Tk3°+ TkioD(ky): (28)

6 Characterization of the
RtR operators g
In this section, we establish a linear equation that

characterized the operatf,, and is adapted for
numerical computation. This requires to introduce

tion of the stationary Riccati equation (the operatoiagain new operators.



6.1 New RtR operators associated We need an analogous framework for the concate-
to the half space problem nation operation : construct a function 8rby con-

. . catenating functions de ned o8y, $* and$ . For

ciated with the halfspace proble (). LetS be n 0
the boundary ofW" : H;;Z(g) = u2 H¥(8): u . 2 HE};Z(SO)
- +
S=S [SIS (29) equipped with its natural Hilbert structure and its

where S = +¥;% y= % _ dual (this is a de nition)

12, ey . 1172/ey O
We can identify® with S ( R), as well as Haa () = Haa () -

§ with S viathe bijectiorF (see Figure (15)):  The interest of this space is that the concatenation
operator, naturally de ned fok? functions, can be

(L=2928 7! ( sL=2S; extended continuously into a continuous operator
F:l(L=292Sy 7! (L=292Sy;  (30) fromthe product
—7- + - + . = = =
(L=2928" 7! (sL=2)2S": HE2(80)° HEX(S)® HIXS )

iNto Haa (8).

DEFINITION 6.1
Giveny 2 H 172(8) andut(y) be the solution of

(P M), we de ne the RtR operators:
S — S
F
| H

He tH 281 Haa X(9)
such thatforaly 2 H 17%(8)

: . Cati ; h i
Figure (15): Identi cation of8 with S. Hoyie  + ﬂl Hiyy+ Zhy)
y s
Accordingly, functions de ned or§ can be asso- |(';;s))/jso = Yisys
ciated to functions ors. More precisely, for any h q i
y :S! C, we will note in the following : lGyYie + + Ty uy)+ zu(y) Lo
yig =y F 1 IHy TH (S) 1 Had™(®)

I 1=2
The arrow in the notatiorS simply emphasizes such thatforaly 2 H (€)
the fact that he identi cation betwee® and$ h

i
is coherent with the orientations indicated of Figure |g;a)ng T uly)+ Zu(y) s

(15). Next we introduce additional operators the in- H Vie = vie- Ty
terest of which will appear later. (sa)Y IS0 = yJShO’
[
H i T H H .
To de ne rigorously these operators, we rst recall lsaYler *+ F ﬂ_y ui(y)+ Zui(y) g+’

that taking the restriction of a function de ned on y - 12
8 respectively toSp, 8" and$ , can be extended, @y ‘H (8! Haa (§)
\{vhen properly de ned by duality, as a continuous such thatforaly 2 H 12(8)
linear operator from

h

. ) i [
H =2(8) Gayle  + gy U0 200

H H— F.
repectively in la9Yiso = Y iso;
h

_ _ _ . 1 L
HA22(80)C HE(8")PandHE2(S )° a9V e "Iy wiy)+ Zuy) v



IHay TH F28) 1 Haa X(9)
such that for aly 2 H 12(8)

H ; h ﬂ H H !
I(a;a)yjs - ul(y)+ Zu (Y)!S ;

) Ty
I(a;a)yjso = yJSoy

" h
l(@a)Y Jer

6.2 Characterization of the
incoming RtR operators  §.)

By de nition of ) and thanksto (11), itis easy to

i
" W) ZUy) )

Completing the above equalities with

hﬂ i
er erq —
WU(/H Zu(j) s g

we easily conclude, using the de nition k.

For the uniqueness of the solution, one combines
symmetry arguments with uniqueness results for quarter
plane problems with incoming RtR conditions. The
idea are are similar to the ones developed in [13, 12],
respectively for Dirichlet or Neumann conditions.

The equatiork ) is quite abstract for he moment
but we are going to see how it can be solved

see that each incoming RtR operator belongs to thBUmerically.

following af ne space :

n
0 _ 122/ qiy. 1=2 .
I‘(p:q)' L2L H(p:q) (S)H () ; o

1=2, iy . _ .
8 &2 H(p:q) (SI)' R(L&) = R(p:q)‘33 :

whereR is de ned in 4.1. Now we present the fun-

damental relation satis ed bl .

THEOREM 6.2

For each(p;q) 2 f s;ag?, the operatok . is the

unique solution to the following problem:

: 0 .
FlndBZL(p;q), £

are treated similarly.

We rst prove thatfisg) is a solution ofE ;).

1=2
S)

(SY, u8(j ) 2 HL , (We). Thus, from

(s:9)

Sincej 2 H(s

UG ) = U (Rsgd );

and8* = $§;S* we deduce that
h q i

neri e

ﬁXhU )+ Zu() S}

T e o

r?yu(!)’f Zu(j) - |

7 . .

= WUH(%S), )+ ZdN(g)) o

In the same way, frol® =S ;S , we deduce that
h 7 i
%(ue(j Y+ ZUE(j)
"1
h 77>1/7 ) ) i
) 177)/U (ﬁés)j )+ Zu (ﬁés)j) ;

s |
)+ ZEG)

S

= '{ém k. (Ep:a)

PROOF: We give the proof folfs. The other cases

6.3 About the resolution of the
ane equation (E,q)

To be able to solvé,; we need to be able
to compute the operator(%_q):

The computation of these operators relies on the
solution uH(y) of the halfspace problemP(H)
which can be computed via their Floquet Bloch
transforms and the method described in section 5.

To express our result, we need to introduce some
local RtR operators depending on the elementary
solutions

e® andet

of the cell problems (21)-(22)-(23) (see Figure (10)),
namely:

19 (k) 2L H " (S0)HEX(S)°
% (k) 2L Hy, ™ (So)iHaz (S1)°;

de ned for all y, 2 Hkylzz(so) by

. n i R R
1% (ky) Yy, = ”—yeo(kyJka)+ Zeo(kyi)’ky Lo

1

. R Vi R R
19% (ky) Yk, = +ﬂ—ye°(ky;yky)+ 2k Vi 1 .

1

o 7 ) .
15 (k) Vi, = ﬂ_yel(ky;)/ky)"' Zel kY 1 ¢

1

" — 7 - o :
It k)Y, = + ﬂ—yel(kya)/ky)"' Zel(kya)/ky ! st
(31)



where

!

S1

!
and " S,

L.3L L
21 2 2
3L.L L
2'2 2

It can be shown that, for ea¢lp;q) 2 f a; sgz,
K (po (ke ky) 2 L Hkylzz(so);Hkxlzz(So) ; (33)

and leads to a useful characterization('g]‘q):

|
are oriented segments (the trace 8ij is taken in  PrRopPOSITION 6.3
, the direction of increasing whereas the trace on Forall(p;q) 2f s, ag®; let

" S, is taken in the direction of decreasiny See

Figure (16).

19 (ky) Vi

11 (ky) Vi

Figure (16): Other local RtR operatdrs (k).

Next, we form new operators in

1=2

L H, "*(So);Haa

namely

1=2

(S0)°

K (kqk)=e Y1 (k) 1| P(k)e

where

I (ky) = 19 (k) + 1% (ky)D(ky)

and, settings = 1 anse, = 1,

Kpig(kKxiky) = |

+

+

€ K™ (ki ky)

e K (kaky):

1

(32)

~H 1=2 P_ p
I 2L Hop L'L So)
de ned by:

F, L

:Fy y

iH IH
(p;a) (p;9)

For anyy 2 HQ;ZZ L2 sy) ;onehas
L &
Gy (k)= 55 Kipalkak)y (k) dk:
p=L

ProoF: We write the proof for(p;q) = (s;9), the
other cases follow similarly.

For simplicity, we restrict ourselves to the case of
suf ciently smoothy for instance. In this case,

I(l-s|:;s) y 2 L%(S)

and its restriction to any subset 8fis de ned directly.
The extension to the more general case can be done by
duality.
In the casen = 0, Expression (14) gives:
T
CWis = 55 KOs de
p=L

I !
whereyy, = Fyy (;ky). We denote byS, and Sj, the
following sequence of intervals of length:

| 3L L L
S,= —+nL-+nL —

8n 1 2 2 2
’ fsrs banpdaa b

nT 2 "2 2

Using the relations (20), we see easily that] the outgoing
Robin data of the solutiou,';)'/‘(yky) of (P ity') on S} and

|
"'S, can be expressed via the operatthf$!9 (k) de-

nedin (31), forallky 2] p=L;p=L[andn 1:
. 16 (Vk,)
Ty
,\H ~
ﬁUky()/ky)
Ty n

wherel (k)= 1% (k))+ I% (ky)D(ky). Using these re-
lations, we obtain

+ 203 1, = 17 ()P Yk

* Z0(k) g =1 (k) Pky)" LYk



COROLARY 6.4

onS :8n 1 . 1=2, i ;
Foranyj 2 H o (S, the function
r— pa P
Havic = — 1 (k)P(k)" 1y, dk R . 1=2 p p
(s9¥ls, y) PRy - _ P.P
S5 S 2 pL Y y'J Fy Qpﬂ)j 2 HQP L'L SO)
OonSy: is the unigque solution to the following problem:
I in — = ; such that
ons*:8n 1L Y QP LL
- ; s TH v — 0
A T L 0y Gy =0
lso¥ss = 2p 1 (ky) P(ky)™ = i, dky r_ p=L
p=L . n _ .
(”) 2_ }/( ykx)dkx— R(p;q)./ ’
We apply then the FB-Transform t@;s)y using the iden- p=L
tication S R, (35)
r whereR . is the restriction operator & de ned
L g . ; ; iH is giveni it
F y('g;s) V) ik = 5 @¥ |(Fs|;s) yig ekl in section 3 andi(p;q) is given in Proposition 6.3.

+¥

. ) PRrRoOOF: To obtain (35-(i)), we apply the FB tranform
Hiaist & ey, SO e cony
n=1 "

nkel .
’ to the equation

By inverting the integrals ovgr p=L;p=L] and the sum Qp;q)j = I("").q) Qp;q)j

overn, we are led to using the following formula '

and use proposition 6.3. The relation (35-(ii)) expresses

¥
Y in terms of the FB variable the condition :

é P(ky)n le nlke — e Lk I
n=1

P(k))e & g (34)

r— p=L
In fact for everyky, P(ky) is compact and its spectral ra-
dius is strictly less than 1. Actually, we could prove (see
[12] for more details) that foe > 0 small enough, the
spectral radius oP(ky) is uniformly bounded irky by a
constant that is strictly less than 1:

p.p.
L'L’

Fy fpal Gkddke= Rpqfis, = J s
p=L

Numerically, we wish to apply a Galerkin procedure
to approximate the problem (35). This means that
we would like to look for the unknown function in a
vector space which amounts to make the condition
(35-(ii)) homogeneous. To do so, we introduce an
extension operator

9t>0; 8kj2 r(P(k)) e 'c:

The property:
fim, kP(ky)"k' = 1 (P(ky))

for the norm ofL (L2(Sp)) ([31]), implies that for some

r 2Je '€;1], nlarge enough we have for &} Bj 2L H(p.lg)z(Si);H 1=2(8)
kP(k)Tk r/ such that
which yields the absolute convergence of the series (34). Ej s Ripa) (36)
Therefore, for eacky andk, | P(k,)e %« isinversible . i
and the sum (34) converges uniformely in the norm ofS0 thatfp)j  EBj = 00onSo.

L (L%(Sp)). The inversion of the integral and the sum

is then possible. Introducing the new unknown

Let us come back now to the resolution of the af ne qu =Fy fpa) B

equations E,q). Since the operatorl%*p;q) (see _ o _ _

De nition 6.1 and Proposition 6.3) are de ned via We easily see that it is the unique solution to the
their Floquet Bloch tranforms, it makes sense thaProblem:

we will try to formulate €,q) using the FB tran-

form as well. Sp) ; such that



50 feH 50

(i) y ooy =G product simply extends the standard inner product
in
Pt (37) 2 p.p .
L == :
(i) y°( ik dk = 0; R
p=L We choose to solve by a Galerkin method the prob-
1_2 _ lem (37), which according to proposition 6.3 corre-
with §; 2 Hy ;2 So) givenby sponds to the integral equatioBky, 2] £;2 ;
G = FyBj +i FyBj 38 et .
Y (k) K (i) (kxi Ky) Y 7 (5 ky) dky = Gj (5K
In practice, we will solve (37) instead of (35). p=L

6.4 Variational formulation

Before discussing a variational formulation of (37)
we de ne some function spaces:

with the linear constraint (37-(ii)). The kernel

K (pq) is de ned in (32).

Now we describe the variational formulation
where we look for a solution il with test

1=2 p.p . 10
V:i=H =.= functions also iW®.
@’ Tr S (9
peL PROPOSITION 6. 6 (VARIATIONAL FORMULATION )
For 2fsag?andj 2 H S'), we have
W= yo2v yO(:Kdk=0 : (40) (P:a) o* andj 2 Hi;q (),
=L - i 1,0 .
8 . Roa) =B +Fy Vg
VAIEH S R o ; 41 o . )
QP L'L So) (41) whereBj is de ned by (36) andy 3,2 W is the
and unique solution to the following problem :
Pt Findy°® 2 W: such that for alf® 2 W°
wo:= y02yo yo(:kdk=0 : (42) D E D _E .
p=L I ithe ¥%6° = G:d° 0 (Qfpg)
REMARK 6.5 with §; de ned by(38)and< ; > the dual product

According to proposition 5.3, it is clear that

W=F, y2H ¥8); y 0 onS ;

where we recall that the restriction of a function inet us show now the uniqueness.

H ¥2(8) isin [H00 2(So)]°
Similarly,
WO=Fy y 2 H''(S);

y 0 onSg

Note that by de nitionV%is the dual olV. In what

betwee andVv®

PROOF: It is easy to see that if'gq is the solution of

(37), it is also the solution OQJ(p.q)).

Lef be a solu-
tion of
D E R
I ithg %@ =0 g°2w®  (43)
and let us show thaf® = 0. The proof can be done in

three steps.
(1) We prove rst thaf(l Q*p.q))y" 2W.

follows, we shall denote the duality product between

V andv®

pL
Y (k) q( k)
p=L

hiqiv:

where the duality product inside the integral is the

one betweerh-l

(S0) andH ?(Sp). This duality

Let us remind that by de nition

H —
I(P:Q))y So_y <0

Moo Fw Gkl =y
p=L



The inversion formula (5.3) gives

r— p=

L
5 ”:y)/(vky)dky—yso.
p=L
which implies
’1_'
Im(l I(pg) W

and it is true in particular foy °.
(2) We prove now tha I?‘,').q))yo = 0.

Given the step (1) and the relation (43), th

function
20— H 0
A= I(p;q))y 2w
satis es
R D E
8g°2w% %% =o (44)
By de nition of V9andw?
L et
8q°2v% ¢° o q°( ;K dk2 WO
p=L

and then since (44), we haeq® 2 V@

D E D | 2 E
A%q° = A%9° oo %GRk
P
D [ 2% E
+ﬁ°;$ q°( ;K dk
p=L
D [ - E
= Mg Q°GRdk:
p=L

We conclude writing that

D &t E
A% g°(;kdk

pL pL
= n°(;x);  q°C;kdk dx
p=L p=L
p=t pt
= no(;x)dx;  g°%kdk =0
p:l_ p=L
by de nition of W. A% is an element oV V, for

which the scalar product with any elementtfivan-
ishes, that implies thai® = 0.

(3) We can prove now that®= 0.
p

Indeed, the uniqueness of the problem (35)

gives
) ¥ (V=0
e
(i) 7 Y (k) dke=0
p=L
+
y =0
which can be summarized by
Ker(l 1H.)\ W= f0g:

()]
We know thaty © 2 W and the result of the step (2)
gives

y 92 Ker(l %;q)):

We conclude thag ® = 0.

According to proposition 6.3, Q'

{nq) can be
rewritten as

Findy ®2 W; such that for alg® 2 W°
apa (7% 0°) = (@) Q(pa)
where
X - hD X E
apg(¥% 9% = dke Y°(:kdia°(ika)
p=L
D i E i
K (pay(kxi ky) ¥ 0Ky 0% k) iy
p=L
.. P . E
(%) = Gi (k0):q°(ike) dk
p=L

(45)
whereK ;. (kx; ky) is de ned by (32) and
< ; > isthe duality bracket between

1=2 1=2

Hy, " (So) andH, “(So):

This is the problem we solve in practice.

7 Algorithm for the
resolution of (P )
We summarize the method presented in the previous

sections for the computation of the RtR operdtor
in the following algorithm :



1. Construction of the halfspace RtR operatér

(i) For eachky, 2 [ p=L;p=L], resolution
of the cell problems (21)-(22)-(23) and
computation of local RTR operators (25),
Tii(ky). Computation of the other RtR
operators (31)," (ky) which will be use-
ful for the step 2-(i).

(if) For eachky 2 [ p=L;p=L], determina-
tion of the propagative operatd?(ky)
solving the stationay RiccatE@)

(iif) Construction of LH using the expression
(28)
(iv) Computation of LM using the Floquet

Bloch Transformation and its inverse by
(16),

2. Construction ot (. for each(p;q) 2f s; ag?

(i) Build the incoming RtR operatoﬁpq)

solving for eaclj 2 H (S') the vari-

(pq)
ationnal problem(lg(pq ),

(iiy Apply the relation
- H
Lp = Eg R L

Rpi:

whereRis the restriction operator fro®
ontoS, andE ) is the extension opera-
tor introduced at the end of Section 3.

3. Determination of the RtR operatbrfrom (9) .

Once the RtR operatdr is computed, the interior
problem posed in the bounded dom#tih

4 u r(w+ ewu = fdansW;
ﬂu' u (P I)
1]'+ZI_L1]_n+ Zu surS;

can be solved.

We want now to compute the solution of
(P ) outside the bounded regiokV, de ned,

1. Thanks to the results of Section 3,can be
decomposed by

ji=

a j (Ip;q)
(po)2f s;ag?
with

8(p;q) 2 f sa0%
and by linearity:

ue(j i) -

1=2

i
j (pq) 2 Hpg ()

o
a
(pa)2f s;ag?

er: i
U (p:q))
with

. . An2- P 1 .
8(pa) 2fsag” U () 2 Hipg (4 1 W)

2. By de nition of the RtR operatorg, ),
8(p;0) 2f sag?
hy o |
erj | eri | — il .
o Ut 200 (o) ¢~ Rl (po
3. The solutionu™(y) of the halfspace problem
(P ) can be compute semi-analytically for all
y 2 H 172(8), thanks to (20), so we have:
8(p;a) 2f s;ag”;
UG (pa) g = U Rpal (pg
4. By symmetry arguments, we have nally
8(p;0) 2f sag?
UG () =
(Y () in W
&S U (V(pg) in SW
&S 1 W(V(pg) ; in S ;W
&&S S 1 W(Ypg) i in S S W
where we have posed g = Rpal (pg

8 Numerical results

thanks to the solutions of the interior and exterior

problems, by
u= u'; in W

_ _ hﬂ i i
- e ;1 . H V\F th H - -+ Z :
u=u®j'; inWF withj i u S
whereu' is the solution of P ') andu€is the solution
of (P ©). It suf ces to use the following algorithm
of reconstruction using essentially the solutigh

of halfspace problem$( M) and the incoming RtR

operatorsy,. involved in the caracterization af.

8.1 Discretization

From a numerical point of view, it seems that two
steps of the discretization of the problem are non
classical :

1. the approximation of the operatg. (for the
computation of each RtR operatoy,q));

2. the approximation of the operatdPgk,) and
D(ky) for eachky (for the computation of the
halfspace RtR operattr)



8.1.1 Discretization of (Qép_q)) See Section 8.1.2 for more details. Finally, by con-
) ) o _ struction,
The choice for the discretization of the problem is
taken mainly because of the resolution of the non Kh (ke ky) 2 L (Vp):
. . o (P V™Y
standard integral equatloQ{p_q)). Indeed, a priori,
the discretization Ofo _ )) relies on Then, we shall construct the approximation sub-
Pa space oV as a subspace of :
the choice of an appropriate nite dimensional
approximation space foW ; vi= 12 P.P.
! h— ( L ’ L th)

the construction of an appropriate approxima- L
tion of the bilinear forma( ; ). and then the approximation subspac&bés a sub-

space of :
One has to take into account that 7

The operatoK q (ks Ky) is not known analyt- Wh= Ynh2VWh  Yn(;Kdk=0:

ically and must be approximated numerically

(this is related to the resolution of the cell prob- It suf ces then to choose the same approximation
lems ans the approximation of the operatorsubspaces for®andw?as respectively the ones for
1% (ky), 1% (ky) de nedin 31,D(k,)) de ned V andW and to replace the duality product in (45)
in (19) andP(ky) de ned in (18) ; by the scalar product ib?(Sp).

the approximation oK (,q) (kx; ky) (which de-  1he semi-discrete (i) problemis :
pends smoothly oifky; ky)) can be done only

for discrete values ofky; ky) : quadrature in Findyﬁ 2 W,; such that for alf],? 2 W,
(kx; ky) is required. . .
For this reason it seems to us that it is easier to work a?p?fﬂ (Vi) = (aR); (46)
in a space of functions generated by basis functionghere
which are tensor product, as we shall detail later, -
Moreover, we need in principle to deal with two h 20, ~0n h Or L~ 20,
constraints : apgWnidh) = dke yr(ikdign(kd
p=L

the constrain of zero-mean value in the

. o " g [
variable appearing in the de nition &V ; N0/ LY. 20/ .
pp g o ) ) K?p;q)(kX'kY)yh( 'kY)iqho( ka) deky
the ky-quasi-periodicity in they variable p=L
condition for the operatorsP(ky), D(ky), pL
Ko (Kx; Ky), ... N o ~
(o (liky) | @)= GOkEK) | dke
It appears dif cult to take into account these two p=L

constraints strongly in the approximation space,

especially if we want to work in the(x;k)-tensor  For the discretization ik, we divide the interval
roduct space". i i

p p B. B

We have chosen to take into account the quasi- L'L

periodicity condition weakly by using a mixed into N equal intervals of length

variational formulation and a mixed nite element

ot ; 2
approximation of the (_:eII problems, which allows Dk = Dk = Dky = _p; k = IDk
us to construct approximate operators NL

Hﬁ(ky) and Dh(ky) 2L (Vh) leenq 2 N, we introduce

whereV;, is a nite dimensional subspace bf(Sp) Pun= W2 L2 P.P,. 8l wi 2p .-
(typically with piecewise polynomial functions). Nia ( L’ L)' » Wikikisal @
Using appropriate discretization of the periodicity pL
cell problems, we can construct w(k)dk=0

Ii?; (ky) and Iﬁ; (ky)2 L (Vh)Z p=L



whereP g is the set of polynomials of degree We introduce a regular (for simplicity) 1D mesh of
Sp (and thenS; by periodicity) made ofN, equal
Let us now introduce segments of length > 0. We introduce the same
hra. _ _ mesh forS; andS; to keep the double symmetry
a'(:1 i N, abasis oWy property of the periodicity cell. We approximate

wj(k); 1 ] N¢ abasis oPyg;

H, *(So)  (respHaa’(S;)9)
with Ny = N(g+ 1) 1 and consider the approxima-
tion space of W by the subspack¥;, of piecewise constant functions
on this mesh.
Whinig= Pnyg Vh= SpanWj(k)Qih(Y) 10 Nl j Ne
The approximate operators
with dimensionN; = N, Ng. _
k 1 Ph(ky); Dn(ky) and aIsoI (ky) andl,f' (ky)
Finally, we consider a quadrature formula in
[0:1] will be constructed as operatorslin(V}) and thus
are represented by, N, matrices.

Z, M
o
0 f(t)dt n?:-lef(tm); 0 ti<ii<tm 1 Forsolving the cell problems (21-22-23) (we have
2Ny, problems of this type), we rst rewrite them as
and introduce the quadrature points a(N;div) rstorder system, uséi(div) L? mixed
formulation and discretize the resulting variational
K"= k + tmDk: problem with the lowest order Raviart-Thomas

mixed nite elements [27] on the doubly-symmetric
periodic mesh ofC (i.e. the “traces” of this mesh
on Sp, S; and S; coincide with the 1D mesh
introduced above).

The fully-discret problem that we solve is :

Findy 2 Whn:g; such thasi1;Nn]l; 8j 2 [1; Nl

hNigM (5 0.0 Ay = ~ (s gD -
Apa) R = (Wid); (47) The advantage of such a choice is that both
where the traces of the scalar unknown and of its normal
N derivative are degrees of freedom of the method and
M h
A pg) (Yrswigh) = both belong tovy, so that the operators
2 2 g hnL T 19 (k) andly (k)

M

a wnwi(k?) - FRAIN O

M i i arenaturallyirL (Vp).

a wn 8 K?p;qm":*:la?)y‘ﬁ(:@?):ai“ L2
ly=1

m=1 To determine?,(ky), we solve the discrete problem
“(wig") = , Th(ky;X)= 0
FindX 2 L (Vy) such that
2p Y N . e h e r(X)<1
na @ wn g GRkAiah [ wilkr): (48)
Ix=1m=1 where
8.1.2 Discretization of the half waveguide Th(kiX) = Teh Th tx2+ Tih lTkg;lh

problem (PAE) 1

e S N N
For each quasi-periok, (typically the quadrature
points introduced in the previous section), we needs a matrix quadratic equation.
to construct discrete approximations of
_ _ The resolution of (48) can be done using one
P(ky); D(ky) and alsol® (k) and® (ky) of the two following methods (see [21] for more

. . L details about these methods) :
The rst two quantities require approximations to

the operatorik'y’, i=01;j=0;1. (i) aspectral approach ;



(i) a modi ed Newton method. The solutionP,(ky) is expected to be the limit of the

. _sequenc®(ky).
The spectral approach (i) leads to solve the matrix
quadratic eigenvalue problem: Once, Py(ky) is determined, the operatddp(ky)
o10 11 1 1 1eo1 is obtained using the discrete version of the rst
/ Tky;h Tky;h + Tky;h Tky;h relation of (26)
00 01 T11 1lt10 i
L Tgn T Tin Tgn Tgn =0 Dh(k)= Tk ' Rk) T
with the condition Finally the approximation of the RtR operator

i< 1 LY (ky) is obtained by

_ 100 10
We can show that the solutions of this matrix Ln(ky) = Tky:h+ Tky:hDh(ky)
quadratic eigenvalue problem are associated by ) ) ) -
pairs(/ ; 1=/ ). We keep exactly thodé, eigenvalue and the approximation of the solution d¢? Q) can

and eigenvector pairsf (/1 X);  ;(In;j &), be constructed cell by cell using a discrete version
for which j/ij < 1, and discarding the rest (also of (20) once we have theNg basic solutions of the
numbering). cell problems (21-22-23p;(ky) andDp(ky).

One can also think about solving directly theFor the approximation of the halfspace RtR
nonlinear equation (48) using a Newton's aIgorithmOper‘?ltorLH (resp.  the approximation of the
for instance. The dif culty is to take into account Solution of @ ™), it suf ces to apply the theorem
the constraint about the spectral radius. That is why-8 (resp. the relation (14)) taking into account
we have proposed a heuristic modi ed Newton'sthe Qiscretization of théy-variables introduced in
algorithm where a projection step is applied at eactpection 8.1.1.

step of the algorithm. The algorithm we suggest

consists in constructing, from the initial guess

PY(ky) = 0, the sequend@(ky) de ned by: Since we do not have actual solutions to the problem
of wave propagation in a general locally perturbed
periodic media, we cannot say for certain that the
solution we obtain by following the procedure
described in the previous sections is indeed the
Ph(ky)dPY* *+ dPT* *RN(ky)  solution. However, we make comparisons to check
self-consistency in all the numerical examples.

Compute dP,g1+1 solution of the Lyapunov
equation :

10 +11 1
Tih Tiin

1

00 01 T11 1lt10 11 n+ 1
+ Toh Tgh Tgh Th Tih ar,

. 8.2 Particular case of homogeneous
= Thlky: Fy(ky):

media
Compute|5r’1‘+ 1(ky) = P(ky) dP™ 1. We rst apply the procedure described in the
previous sections to the case of a locally perturbed
— homogenous media, namely the case wheyés a
If r (B *(ky)) < 1, keep constant. Note that for an homogeneous media, it is
w1 i1 quite original to use a square boundary to construct
R (k) = B (ky); the DtN operator.
LBt
if r (A" (k) 1, take We represent Figure 17(a) the souréewhose

support is included iW =[ 0:5;0:5]2, the index
rp= 1 and we suppose the period of the media
equal to 1 (which means that all the computations

P k) = By Hk)=r (B (k)

Stop the algorithm when : will be done in a periodicity cell whose size is 1).
KdP™ 1k Using the algorithm described previously, the RtR
h is small enough. operator can be computed and the interior problem

kP (ky)k can be solved. We represent the interior solution



Figure 17(b) withw = 5 ande = 1. Thus, even
with a squared arti cial boundary, we recover the 6
revolution symmetry of the solution.

source

Figure (18): The interior solutioo

(a) The source and the arti cial bounda®y

(b) The solutionu’ in W
0 0

Figure (17): The sourcé on[ 6:5;6:5] (its sup- 2
portis included inW =[ 0:5; 0:5]%) and the solu-
tion u' of in W(P ') (computed thanks to the con- 4

struction of RtR operatdr)

Finally to build the solution everywhere, we use the

algorithm presented in Section 7. Note that in this

case, since the source is with double symmgtty, o _

istoo:ji=j (iss)_ Here again, we recover the revo- Figure (19): Its restriction o\ is computed thanks

lution symmetry of the solution. to a halfspace problem.



4 IU.UO

ro

Figure (20): Its restriction to this halfspace is de- Figure (22): The solution in the whole space.
duced by symmetry.

8.3 More general periodic media

We can apply now our algorithm to a general pe-
riodic media, whose refraction index is represented
Figure (23), the source is given in Figure (24). The
period here is equal to 1. After computing the DtN
operator, the interior problem can be solved and
we represent the interior solution Figure (25). We
use nally the same algorithm as previously for the
reconstruction of the solution outsid (see Fig-
ure (26)).

(x)

000000000000
0O00O0OO0ODODOODOOOO]Y
00000000000 0N
000000000000
co0oo0oo00000000 ol
00000000000 o
Mo 00000 000000
00000000000 ol
00000000000 OfM
000000000000
000000000000k
00000000000 O]/
©00000000000}}
-6 -4 2 0 2 4 6
X

Figure (21): The restrictions to the quarter plane corfigure (23): The locally perturbed periodic media
responds thanks s - with the arti cial boundaryS'.



Figure (24): The source whose support is compactigure (26): The solution in the whole space in the

with the arti cial boundaryS'.

05

U35 0 05

Figure (25): The interior solutionu’ in W =
[ 0:5;0:5]°for w= 10 ande= 0:1.

case foW =[ 0:5;0:52 w= 10,e= 0:1.

8.4 Invariance with respect to the
choice of S$' and C

The solution of the whole problem has to be inde-
pendant of the choice of the arti cial bounda8)

and the periodicity celC. One easy way to vali-
date the method is to change their size and check
that the solution is the same. For the same media
as previously, we choose a bigger boundahas
shown Figure (27). All the computations are done
in a periodicity cell whose side is equal to 2. The
new interior solutionu' is represented Figure (28)
and the solution is nally reconstructed in the re-
gion[ 6:5;6:5]° as shown in Figure (29). We re-
cover the solution computed in the previous section
and shown Figure (26).



Figure (27): The locally perturbed periodic mediaFigure (29): The solution in the whole space with
W=[ 051572 w= 10,e= 0:1.

with the arti cial boundaryS'.

Figure (28): The interior solutionu' in W =
[ 0:51:5]° with w= 10,e= 0:1.
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