Résumé : |
Cette thèse propose une étude originale de la propagation d'ondes acoustiques dans un guide d'ondes. La méthode consiste à factoriser l'équation des ondes grâce à la technique du plongement invariant: on introduit dans le domaine une frontière mobile, correspondant à une section du guide, et on résout le problème pour la partie du guide comprise entre cette section et une de ses faces. Cela permet d'obtenir un système couplé d'équations différentielles et de faire apparaître un opérateur de type Dirichlet-to-Neumann, solution d'une équation de Riccati. On étudie alors celui-ci à l'aide d'une formule de représentation: l'opérateur est semblable à un semi-groupe linéaire par une transformation homographique. |