Publications

Titre : Méthodes variationnelles, domaines fictifs et conditions aux limites artificielles pour des problèmes hyperboliques linéaires. Applications aux ondes dans les solides
Année : 2003
Type : H.D.R.
Auteurs : É. Bécache
Résumé : Ce mémoire décrit mes travaux de recherche sur l'analyse mathématique et numérique de problèmes de propagation d'ondes. Le premier chapitre est consacré à des méthodes numériques pour la propagation ou la diffraction d'ondes élastiques dans des solides : (i) potentiels retardés dans des milieux élastiques homogènes isotropes, (ii) méthodes d'imagerie sismique par tomographie, (iii) équations paraxiales, (iv) éléments finis mixtes pour l'élasto-dynamique. Ce dernier point, (iv), le plus détaillé ici, s'inscrit dans une stratégie générale pour obtenir une méthode numérique performante pouvant traiter des milieux complexes (anisotropes, hétérogènes) avec des obstacles de géométrie quelconque. Il a été développé dans l'optique d'utiliser la méthode des domaines fictifs qui fait l'objet du deuxième chapitre. Après une description de cette méthode sur un problème modèle scalaire, elle est présentée tout d'abord pour un problème de diffraction d'ondes élastiques par une fissure modélisée soit par une condition de surface libre soit par une condition de contact unilatéral, puis pour un problème d'acoustique musicale (modélisation de la guitare). Le troisième chapitre traite de questions de conditions aux limites artificielles utilisées pour borner le domaine de calcul. Des méthodes de couches absorbantes parfaitement adaptées (PML) sont analysées pour des problèmes transitoires (électromagnétisme, acoustique, élasto-dynamique, système hyperbolique général du premier ordre) puis pour un problème d'acoustique en écoulement en régime harmonique. Le mémoire se termine par un point sur les travaux en cours et des perspectives ouvertes par ces travaux.
Thèmes :
Référence : - Habilitation Université Paris-Dauphine images/icons/doctype_pdf.gifimages/icons/doctype_link.gif