Résumé : |
Le propos de cette étude est la modélisation numérique de la guitare acoustique dans le domaine temporel. La méthode consiste en l'élaboration d'un modèle qui s'attache à décrire les phénomènes vibratoires et acoustiques mis en jeu depuis le pincer de corde jusqu'au rayonnement 3D du son. La corde est modélisée par une équation des ondes amortie 1D. Elle est couplée à la table d'harmonie via le chevalet. Le mouvement de la table est régi par le modèle de plaque mince amortie de Kirchhoff--Love pour un matériau orthotrope et hétérogène, percée d'un trou et encastrée sur son bord externe. Le reste du corps de la guitare (fond, bords, manche...) est supposé rigide. La table rayonne à l'intérieur et à l'extérieur de la cavité. La modélisation complète du champ acoustique rayonné est une approche originale comparativement aux études antérieures portant sur la guitare. On obtient un système d'équations aux dérivées partielles que l'on résout numériquement dans le domaine temporel. On utilise une méthode spectrale spécifique pour la résolution de l'équation de plaque dynamique de Kirchhoff-Love. Pour l'équation de corde et l'équation des ondes acoustiques, on utilise une méthode mixte standard pour l'approximation spatiale et des différences finies centrées en temps. Le problème d'interaction fluide-structure est résolu par une méthode de domaines fictifs qui permet d'approcher finement la géométrie de la guitare tout en utilisant un maillage cubique régulier pour le calcul du champ sonore 3D. L'originalité du schéma de résolution du modèle est un couplage stable entre une méthode de résolution exacte en temps et une méthode discrète. Un nombre important de simulations numériques est réalisées, montrant la validité de la méthode et les très riches potentialités d'une telle approche. |