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Abstract

We consider an inverse scattering problem in a 3D homogeneous shallow ocean.
Specifically, we describe a simple and efficient inverse method which can compute an
approximation of the vertical projection of an immersed obstacle. This reconstruc-
tion is obtained from the far field patterns generated by illuminating the obstacle
with a single incident wave at a given fixed frequency. The technique is based on an
implementation of the theory of the convex scattering support [1]. A few examples
are presented to show the feasibility of the method.
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1 Introduction

In the following article we consider a fixed-frequency inverse scattering prob-
lem in a three dimensional waveguide. The waveguide we consider is bounded
in one (vertical) direction, while infinite in the other two (horizontal) direc-
tions. The geometry, governing equations, and boundary conditions associated
with the scattering phenomena are those of linear acoustics in a homogeneous
shallow ocean ; described for example in [2]. We develop and present a simple
and efficient method to find an approximation of the vertical projection of
the convex hull of an immersed obstacle, given the observed far field patterns
when this obstacle is illuminated by a single incident monochromatic wave.
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Imaging a scatterer in a shallow ocean is a classical inverse problem which
has been considered by many authors. Furthermore, it is well known that the
inverse scattering problem associated with a 3D waveguide as such is more
difficult than in free space. Actually, because of the physical presence of the
top and bottom elements of the waveguide, only a finite number of modes
can propagate at long distance. The remainder of the modes are said to be
evanescent, which means they decay exponentially as a function of distance.
This fact increases the so-called ill-posedness of the inverse problem. Two
issues have to be considered: first the identifiability, i.e. the uniqueness of the
scatterer given the data, secondly the use of a stable inversion technique.

Concerning the first issue, Gilbert et al [3] have proved uniqueness when we
have measurements of the scattered field on a horizontal plane. However, due
to the presence of evanescent modes, uniqueness from the far field patterns
cannot be established. In the following article, we present a proof of unique-
ness for measurements supported by a cylinder which surrounds the obstacle.
Concerning the second issue, several methods have been proposed in both two
and three dimensional oceanic models (see for example [4–9] and the bibliog-
raphy of [6]). The most interesting methods are those for which no a priori

assumption is made concerning the physical nature of the scatterer. For exam-
ple the linear sampling method (see an overview in [10]) has been adapted to
the 2D ocean [6]. The main drawback of such a method is that many incident
waves are required.

Recently, in [11], Kusiak et al have developed and implemented a theory based
on the so-called convex scattering support. This theory provides the same
advantage as the linear sampling method concerning a priori knowledge of
boundary conditions. Additionally, it allows one to use but one incident wave
to deduce information concerning the location, size and shape of the scatterer.
Essentially, the reconstruction method consists of producing, by intersecting
convex test domains, a minimal convex set which must be contained in the
convex hull of the true scatterer. The main goal of our paper is to show how
this method can be adapted to approximate the convex hull of the vertical
projection of an obstacle in a 3D ocean by using the far field patterns generated
by single fixed-frequency illumination of the scatterer.

This paper is organized as follows. In the second section, we briefly recall
the various aspects of the direct scattering problem in order to address its
inverse counterpart. In particular, we describe our approach in computing the
simulated far field patterns using a finite element technique on a bounded
domain. In the third section, we prove uniqueness of an acoustically sound
soft scatterer having data on a surrounding cylinder. The fourth section is
devoted to a brief review of the theory of the convex scattering support. In
section five, we describe how that theory may be adapted to our 3D waveguide
in order to approximately identify the convex hull of the vertical projection
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of the obstacle in a shallow ocean. Finally, in the sixth section, we present
results which demonstrate the feasibility of our method.

2 The direct scattering problem

Our waveguide is the open domain W included between the two horizontal
boundaries z = 0 (called ’top’ or Γ0) and z = h (called ’bottom’ or Γh) in the
Cartesian coordinates (x, y, z). The boundary conditions at z = 0 and z = h
are of the Dirichlet and Neumann types respectively, and the waveguide can
therefore be considered as a model of a finite depth ocean in contact with an
acoustically-soft medium (such as air) at the top and with an acoustically-hard
medium (such as rock) at the bottom.

We suppose that a sound hard or soft obstacle O is embedded in W . We
define Ω to be the open domain of W complementary to O. A monochromatic
acoustic wave scatters due to the presence of the obstacle. Let k denote the
wavenumber, and let ui, us and u respectively denote the incident, scattered
and total fields (u = ui + us). The governing equations for us in Ω are











































(∆3 + k2)us = 0 in Ω

us|Γ0
= 0,

∂us

∂z
|Γh

= 0 (referred by (BC) from now on)

∂us

∂ν
|∂O = f or us|∂O = g

(RC).

(1)

Here, ∆3 is the three dimensional Laplacian, ν is the outward unit normal on
∂O, f = −(∂ui/∂ν)|∂O and g = −ui|∂O. Lastly, (RC) is a radiation condition
associated with the behavior of us when r =

√
x2 + y2 → ∞. Such a condition,

which we will come to specify shortly, is necessary to ensure well-posedness of
problem (1).

We define the three dimensional cylindrical domain C(R) = B(R) × (0, h),
where B(R) is the open ball of radius R in R

2, and define its two dimensional
boundary by Σ(R) = ∂B(R) × (0, h). We assume R to be large enough such
that O is included in C(R), and we define the domains Ω′ = (B(R)/O)×(0, h)
and Ω′′ = (Ω/B(R)) × (0, h) (Ω = Ω′ ∪ Ω′′). Finally, let S1 denote the unit
sphere in R

2.

It is well known that any field us which satisfies the 3D Helmholtz equation
in Ω′′ and the boundary conditions (BC) has, in cylindrical coordinates, the
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following representation in the domain Ω′′

us(r, θ, z) =
∑

n∈N

∑

m∈Z

(

amnH
(1)
m (knr) + bmnH

(2)
m (knr)

)

ψm(θ)wn(z). (2)

Here, H(1,2)
m are the Hankel functions of the first and second kinds, c.f. [12].

The functions ψm and wn are defined by

ψm(θ) =
eimθ

√
2π
, wn(z) =

√

2

h
sin

(

(n+ 1/2)
πz

h

)

. (3)

We note they form respectively orthonormal basis of L2(S1) and L2((0, h)).
The sequence of complex numbers kn is defined by

kn =

√

k2 −
(

(n+ 1/2)
π

h

)2
, <(kn) + =(kn) ≥ 0. (4)

From now on, we assume that k is chosen such that kn never vanishes.

We note that, in the domain Ω′′, we may also write the scattered field as

us(r, θ, z) =
∑

n∈N

us
n(r, θ)wn(z), (5)

where for each n we have

us
n(r, θ) =

∑

m∈Z

(

amnH
(1)
m (knr) + bmnH

(2)
m (knr)

)

ψm(θ). (6)

Assuming that only the outgoing or evanescent contributing modes in the
expansion of us are physically acceptable, which will be considered as our
radiation condition (RC), it then follows that all of the coefficients bmn in
(2) necessarily vanish. The modes us

n for n ∈ [0, N − 1] having =(kn) = 0
correspond to the so-called propagating waves, while the modes for n ≥ N
having <(kn) = 0 correspond to the evanescent ones. The radiation condition
(RC) is equivalent to an infinite number of classical Sommerfeld conditions in
two dimensions, that is for each n

lim
r→+∞

√
r(
∂us

n

∂r
− iknu

s
n) = 0, (7)

and each of the above limits hold uniformly in all directions θ.
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It can be established, using the same arguments as in [13], that problem (1)
in the unbounded domain Ω is equivalent to the following problem in the
bounded domain Ω′











































(∆3 + k2)u′ = 0 in Ω′

(BC)

∂u′

∂ν
|∂O = f or u′|∂O = g

∂u′

∂ν
|Σ(R) = T (u′|Σ(R)).

(8)

Here, T : H
1

2 (Σ(R)) → H− 1

2 (Σ(R)) is the Dirichlet to Neumann operator
defined by T (χ) = (∂S(χ)/∂ν)|Σ(R), where S(χ) is the solution of the following
well-posed problem in Ω′′







































(∆3 + k2)u′′ = 0 in Ω′′

(BC)

u′′|Σ(R) = χ

(RC).

(9)

For clarity we offer an explicit expression for T . Since the functions defined
by χmn(θ, z) = 1√

R
ψm(θ)wn(z) form an orthonormal basis of L2(Σ(R)), then

χ ∈ H
1

2 (Σ(R)) may be expanded as

χ(θ, z) =
∑

n∈N

∑

m∈Z

dmnχmn(θ, z), (10)

and thus we obtain the identity

T (χ)(θ, z) =
∑

n∈N

∑

m∈Z

dmn kn
(H(1)

m )′(knR)

H
(1)
m (knR)

χmn(θ, z). (11)

Following [13], it may be easily proved that problem (1) is equivalent to
problem (8) in the sense that if us solves problem (1), then us|Ω′ also solves
(8). If u′ solves problem (8), then the function us defined by us|Ω′ = u′ and
us|Ω′′ = S(u′|Σ(R)) will also solve (1).

It should be pointed out that the well-posedness of problem (1), and hence
of the equivalent problem (8), is not known in general. Again, following [13],
we may readily show that problem (8) satisfies the Fredholm property. Thus,
existence in problem (8) holds whenever uniqueness holds. To the authors’
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knowledge, the uniqueness property has been proved only in the case of the
acoustically-soft obstacle (Dirichlet data f), when ∂O and f are sufficiently

smooth (say ∂O of class C2 and f ∈ H
3

2 (∂O), which implies that u′ ∈
H2(Ω′)), and when the scatterer O satisfies a convexity condition of the type
ν.(x, y, 0) = νxx + νyy ≥ 0 for all points of its boundary. The corresponding
proof is established in [2] amended by [14] (see also p. 92 in [15] for a simplifi-
cation in the proof). When this convexity condition is not satisfied, or in the
case of the acoustically-hard obstacle (Neumann data g), the well-posedness
of (1) or the equivalent problem (8) remains an open problem.

In order to compute the simulated far field patterns which form the data of the
inverse problem, a finite element method based on a weak formulation of prob-
lem (8) was employed. In particular, the specific basis functions χmn defined
above play a crucial role in the finite element method since they diagonalize
the operator T .

3 A uniqueness result for the inverse problem

We begin by assuming that the incident wave ui is of the form ui(x, y, z) =

wn(z)eiknd̃.x̃, where d̃ = (dx, dy) ∈ S1 and x̃ = (x, y). We choose n ∈ [0, N − 1]
such that ui is a propagating wave which satisfies ∆3u

i + k2ui = 0 in W and
the boundary conditions (BC). We now offer our uniqueness theorem.

Theorem 1 Suppose O1,2 are two soft obstacles whose boundaries are of class
C2 and satisfy the convexity condition νxx + νyy ≥ 0. If we assume that for
an infinite number of incident waves ui

q with propagation direction d̃q, the
corresponding total fields u1q and u2q coincide on the cylinder Σ(R), then
O1 = O2.

The proof uses the same arguments as Schiffer’s proof in [16] (p. 173), and
is strongly inspired from the one detailed in [17] (p. 107) in the case of three
dimensional free space. To complete the proof we need the two following lem-
mas, the first one being a classical result of spectral theory, and the second
one being proved in [17] (p. 21).

Lemma 1 For a given wavenumber k, the space of solutions of the homoge-
neous Dirichlet problem for the Helmholtz equation inside a bounded domain
D with Lipschitz-continuous boundary has a finite dimension.

Lemma 2 Every solution u of the two dimensional Helmholtz equation outside
a given ball B(R) which satisfies the radiation condition

lim
r→+∞

√
r(
∂u

∂r
− iku) = 0, r =

√

x2 + y2, (12)
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where the limit above holds uniformly in all directions x̂ = x̃/r, has the
following asymptotic behavior :

u(x̃) =
eikr

√
r

(

u∞(x̂) +O(
1

r
)
)

, r → +∞, (13)

uniformly in all directions x̂.

Here, the function u∞ defined on the unit sphere S1 is known as the far field
pattern of u and is given by

u∞(x̂) =
ei π

4√
8πk

∫

∂B(R)

(

u(y)
∂e−ikx̂.y

∂ν(y)
− ∂u(y)

∂ν(y)
e−ikx̂.y

)

ds(y).

Proof of theorem 1 Let us suppose that O1 6= O2 and that both satisfy the
assumptions of theorem 1. We know from section 2 that the direct problem (1) for
O1 and O2 is well-posed for all q. The total fields u1q and u2q, and consequently
the scattered fields us

1q and us
2q, coincide on the cylinder Σ(R), and therefore in

the exterior domain Ω′′ as well because of the expansion formula (2) with bmn = 0.
From the unique continuation principle, u1q and u2q coincide in the exterior domain
Ω/(O1∪O2). Since u1q|∂O1

= 0 and u2q|∂O2
= 0, in each connected component D of

O1∪O2/(O1∩O2), either u1q or u2q is solution of a homogeneous Dirichlet problem
for the Helmholtz equation inside D.

With the aid of lemma 1, we complete the proof by proving that uiq (i = 1, 2)
are linearly independent in domain D for all q. This implies that the connected
components D are empty, and hence O1 = O2. For simplicity, we set uiq = uq and
assume there exists a P ∈ N and some constants cq, q ∈ [1, P ], such that in D,

P
∑

q=1

cquq = 0. (14)

Again, from the unique continuation principle, (14) holds in Ω′′. The functions us
q

have a similar representation as (5) in the domain Ω′′, so that using uq = ui
q + us

q

in (14), multiplying the result by wn(z) and integrating the product in z on (0, h),
yields

P
∑

q=1

cqe
iknd̃q .x̃ +

P
∑

q=1

cqu
s
q,n(x̃) = 0, ∀x̃ ∈ R

2/B(R). (15)

Multiplying (15) by e−iknd̃p.x̃ for a given p ∈ [1, P ] and integrating the result over
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x̃ on ∂B(R) gives

P
∑

q=1

cq

∫

r=R

eikn(d̃q−d̃p).x̃ dx̃ +
P

∑

q=1

cq

∫

r=R

us
q,n(x̃)e−iknd̃p.x̃ dx̃ = 0. (16)

The first integral becomes

∫

r=R

eikn(d̃q−d̃p).x̃ dx̃ =

2π
∫

0

eikn||d̃q−d̃p||Rcosθ Rdθ = 2πR J0(kn||d̃q − d̃p||R), (17)

where J0 is the classical Bessel function of the first kind, c.f. [12].

As for the second integral, since each us
q,n satisfies the 2D Sommerfeld condition

(7), it follows from lemma 2 that they have the asymptotic behavior

us
q,n(x̃) =

eiknr

√
r

(

u∞
q,n(x̂) + O(

1

r
)
)

, r → +∞,

uniformly in all directions x̂, with u∞
q,n defined on the unit sphere S1 by

u∞
q,n(x̂) =

ei π
4

√
8πkn

∫

∂B(R)

(

uq,n(y)
∂e−iknx̂.y

∂ν(y)
− ∂uq,n(y)

∂ν(y)
e−iknx̂.y

)

ds(y)

for a sufficiently large R. Hence, there exists a constant C1 for a sufficiently large
R such that ∀q ∈ [1, P ],

|us
q,n(x̃)| ≤ C1√

R
, ∀x̃ ∈ ∂B(R).

Therefore, there exists another constant C2 such that

∣

∣

∣

P
∑

q=1

cq

∫

r=R

us
q,n(x̃)e−iknd̃p.x̃ dx̃

∣

∣

∣
≤

P
∑

q=1

|cq|
∫

r=R

C1√
R

dx̃ = C2

√
R.

Dividing (16) by (2πR) we obtain

cp +
∑

q 6=p

cqJ0(kn||d̃q − d̃p||R) = O(
1√
R

), R → +∞.

Passing to the limit R → +∞, it follows that cp = 0 for all p ∈ [1, P ]. This completes

the proof. �
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4 The convex scattering support in two dimensions

The recent theory developed in [1,11] treated an inverse scattering problem
posed in free space. In this section, for the sake of self containment, we recall
the main definitions and properties which substantiate that theory. This theory
leads to a summability test which characterizes the convex scattering support.
From that accurate but unpractical criterion we derive a heuristic but practical
one, as well as an identification strategy based on that new criterion.

Definition 1 A test domain D (D′ = R
2/D) supports the far field pattern

u∞ ∈ L2(S1) iff there exists a field us ∈ H1
loc(D

′) satisfying (∆2 + k2)us = 0
in D′, and for which u∞ is the far field pattern corresponding to us.

Definition 2 The intersection of all convex domains that support u∞ is a
convex domain that supports u∞. It is called the convex scattering support of
u∞ and is denoted cSksupp(u

∞).

The properties on which definition 2 relies are proved in [11]. From the two
previous definitions we immediately have the following

Proposition 1 If u∞ is the far field pattern produced by a scatterer O with
convex hull ch(O), then cSksupp(u

∞) ⊂ ch(O).

As proposition 1 indicates, the convex scattering support is a minimal set
included in the convex hull of the obstacle. Unfortunately, in general, it is
not possible to find a maximal set that could contain the obstacle. Other
proprieties of cSksupp(u

∞) can however be found in [1] and [11].

Definition 3 Let S∞
D : H−1/2(∂D) → L2(S1) be defined by

(S∞
D )ϕ(x̂) =

∫

∂D

ϕ(y) Φ∞(x̂, y) dy, Φ∞(x̂, y) =
ei π

4√
8πk

e−ikx̂.y.

The theory of the scattering support is based in part on the following theorem.

Theorem 2 Assuming that k is such that the homogeneous Dirichlet problem
for the Helmholtz equation inside D admits only the trivial solution, S∞

D is a
compact, injective operator with dense range. Furthermore, D supports u∞ ∈
L2(S1) iff

∑

p∈N

|(u∞, gp)|2
σ2

p

< +∞, (18)

where {σp, fp, gp} (p ∈ N) is a singular system of S∞
D .
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Sketch of the proof The proof is standard, and we recall the principle steps in
the following. For a proof of the fact that S∞

D is a compact, injective operator with
dense range, see [18]. First, it may be demonstrated, c.f. [19], that the operator

SD : H− 1

2 (∂D) → H
1

2 (∂D) defined by SDϕ(x) =
∫

∂D ϕ(y)Φ(x, y) dy, where Φ is

the two dimensional fundamental solution Φ(x, y) = iH
(1)
0 (k|x−y|)/4, is an isomor-

phism when k is such that the homogeneous Dirichlet problem for the Helmholtz
equation inside D admits only the trivial solution. Since S∞

D ϕ is the far field pattern
associated to the scattered field SDϕ, it follows that D supports u∞ ∈ L2(S1) iff
u∞ ∈ Range(S∞

D ) (see lemma 3.6. in [11]).

Secondly, since S∞
D is a compact injective operator between H− 1

2 (∂D) and L2(S1),
there exists a singular system {σp, fp, gp}, p ∈ N, c.f. [17]. Precisely, {σp} is a
strictly positive sequence of R, and the sequences of functions {fp} and {gp} are
respectively orthonormal basis on H−1/2(∂D) and L2(S1) such that S∞

D fp = σp gp

and S∞∗
D gp = σp fp. Here, S∞∗

D denotes the adjoint operator of S∞
D .

Finally, since S∞
D has dense range in L2(S1), then Picard’s theorem, c.f. [17], states

that D supports u∞ ∈ L2(S1) iff (18) is satisfied. �

The two following propositions, which result from simple calculations, enable
one to establish criterion (18) when D is any ball B(C,R) in R

2 of center C
and radius R.

Proposition 2 In the particular case D = B(O,R), the functions gp coincide
with the ψm (m ∈ Z) defined by (3) while the corresponding σm are

σm =

√

πR

2k
|Jm(kR)|, (19)

where the Jm are the classical Bessel functions of the first kind, c.f. [12].

Proposition 3 If S∞
C and u∞C respectively denote the operator S∞

B(C,R) and

the function u∞C (x̂) = eikx̂.Cu∞(x̂) ∈ L2(S1), one has

u∞ ∈ Range(S∞
C ) iff u∞C ∈ Range(S∞

O ). (20)

From propositions 2 and 3, it follows that when D = B(C,R), with C =
(Cx, Cy) ∈ R

2, criterion (18) is simply: B(C,R) supports u∞ iff

∑

m∈Z

|cm|2
σ2

m

< +∞, cm =
1√
2π

2π
∫

0

e−imθeik(Cx cos θ+Cy sin θ)u∞(θ) dθ. (21)

A practical and useful implementation of criterion (21) is delicate because of
the interpretation of +∞. To deal with this issue, we have derived a simplified
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and heuristic criterion which relies on the fact that, as a function of the indexm
and for a fixed argument z, the function |Jm(z)| of m is a bounded oscillating
function for |m| � z, and a rapidly decaying one to zero when |m| � z,
exhibiting a region of rapid transition near m = z, c.f. [12]. Similarly, for a
real bounded obstacle O ⊂ W and for a given C, we observe that the Fourier
coefficients |cm| also possess a similar behavior. Namely, we witness a rapid
accumulation to zero when m � −mC

− and m � mC
+, the lower and upper

bounds −mC
− and mC

+ being directly read on the |cm|-curve. Criterion (21) is
then ’equivalent’ to: B(C,R) supports u∞ ’iff’

kR ≥ max(mC
−,m

C
+). (22)

Criterion (22) provides, for a given C = (Cx, Cy), the smallest ball of center
C which supports u∞. Its radius is simply max(mC

−,m
C
+)/k.

The identification strategy we have chosen consists of the basic following
scheme. First, we assume a priori that the obstacle is fully contained within
the ball B(C0, R0). Next, we select a finite collection of balls B(Ci, Ri) (i ∈ I),
the centers Ci of which are equally distributed on the circle ∂B(C0, R0), the
radii Ri of which are obtained by computing Ri = max(mCi

− ,m
Ci
+ )/k. Finally,

we construct the intersection of the collection B(Ci, Ri) for i ∈ I. This pro-
vides an approximation of the convex scattering support cSksupp(u

∞), and
hence an approximation of the convex hull of O.

Remark 1 The Picard series given in (21) dictates that our 2D inverse prob-
lem of finding the obstacle O from the far field pattern u∞ yields a severely
ill-posed problem because of the rapid accumulation of the singular values σm

to zero as |m| tends to infinity. In a sense, our simplified criteria (22) is a form
of regularization as it acts as a spectral cut-off.

Remark 2 Criteria (22) requires the computation of the Fourier coefficients
cm of the function eikx̂.Cu∞(x̂) in L2(S1). In practice, only a finite number M
of such coefficients are calculated. It is necessary that M should be consistent
with the value of the frequency k|C|. That is M > 2k|C| to satisfy the Nyquist
sampling requirement. For a given wavenumber k, this amounts to adjusting
the size of the discrete Fourier basis to the size of the searching region.

5 The three dimensional waveguide inverse problem

In the following section we demonstrate how we may adapt the above simplified
criterion and strategy of identification to determine the vertical projection
PzO of a 3D acoustically-soft or acoustically-hard obstacle O embedded in
the waveguide W . This is done by using the two dimensional far field patterns
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u∞n for n ∈ [0, N − 1], which we define in the following. In the case when
us ∈ H2(Ω′), which holds in the situation we described at the end of section 2,
that is when the direct scattering problem (8) is well-posed, then the function
us(r, θ, z) of z for fixed x̃ = (r, θ) in R

2/PzO belongs to L2((0, h)). Since
the functions wn defined by (3) form an orthonormal basis of L2((0, h)), the
expansion (5) holds for all x̃ = (r, θ) outside PzO, and not only for all x̃
outside B(R). It is then easy to see that for n ∈ [0, N−1], the two dimensional
scattered fields us

n solve the Helmholtz equation with wavenumber kn outside
PzO. Furthermore, we saw that the us

n satisfy the 2D Sommerfeld condition
(7), which enables one to define, for all n ∈ [0, N − 1], the corresponding far
field patterns u∞n with the help of lemma 2.

We summarize these observations by the following system (note that kn ∈ R
+

when n ∈ [0, N − 1]) :

∀n ∈ [0, N − 1],















(∆2 + k2
n)us

n = 0 in R
2/PzO

us
n(x̃) = u∞n (x̂)

eiknr

√
r

+ O(
1

r
3

2

), r → +∞.
(23)

Using the asymptotic behavior of the Hankel functions H(1)
m in formula (6)

(see [12]), we obtain that

u∞n (θ) =
∑

m∈Z

cmnψm(θ), cmn = amn

√

2

πkn

e−i(2m+1) π
4 , (24)

the amn being the coefficients in (2).

Using definition 1, system (23) means precisely that PzO supports u∞n , for all
n ∈ [0, N − 1]. Hence, proposition 1 leads to

N−1
⋃

n=0

cSkn
supp(u∞n ) ⊂ ch(PzO). (25)

We finally conclude that the N convex scattering supports of the far field
patterns which are associated with the propagating waves (with wavenumber
kn) enable one to find an approximation of PzO. In practice, for each n ∈
[0, N − 1], the simplified criterion and the identification strategy described at
the end of the previous section are performed in order to approximate the
corresponding convex scattering support cSkn

supp(u∞n ).

It will turn out in the next section that the numerical results are satisfactory
even if one single convex scattering support cSkn

supp(u∞n ), i.e. for a given
n ∈ [0, N − 1], is used.
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Remark 3 The equations (24) suggest a very simple method to compute
simulated data once the direct scattering problem (8) is solved. The Fourier
coefficients of the far field patterns u∞n (i.e. coefficients cmn) are deduced from
the coefficients amn of (2) via the second equation of (24), which are themselves
obtained by projecting us|Σ(R) onto the basis χmn.

Remark 4 Applying criterion (22) in order to approximate cSkn
supp(u∞n ) re-

quires n to satisfy an inequality of the type knRO > 1, RO being the horizontal
radius of the obstacle. Since kn decreases when n goes from 0 to N − 1, it im-
plies that our inversion technique is valuable only if k0RO > 1 (in particular,
it implies that at least one propagating mode exists), which is equivalent to

k >

√

( π

2h

)2
+

( 1

RO

)2
.

6 Some numerical experiments

In the following experiments, we chose h = 4 as the height of the waveg-
uide, and we reconstructed the convex hull of the vertical projection of an
acoustically-hard obstacle O for the following four cases.

• Case 1 : a sphere of center (0, 0, 2) and radius 1,
• Case 2 : a sphere of center (0, 0, 2) and radius 0.5,
• Case 3 : an ellipsoid of center (0, 0, 2) and semi-axes 2, 2, and 1,
• Case 4 : two spheres of centers (0, 1, 2) and (0,−1, 2), both of radius 0.5.

The incident field is ui(x, y, z) = sin[(n + 1/2)πz
h

]eiknx for k = 4 and n = 0,
k0 being given by (4). Hence, the number of propagating modes is N = 5.
The corresponding scattered fields us in the bounded domain Ω′ (solution of
problem (8)), and the corresponding 2D far field patterns u∞n (n ∈ [0, 4]), are
obtained using the Finite Element code Melina, c.f. [20]. Figure 1 shows the
real part of the total field u in the case 4. Using the computed data u∞n (see
remark 3), for each n ∈ [0, N − 1] we employ the strategy described in section
4. The set Pz(O) is approximated by the intersection of 8 balls B(Ci, Ri)
(i ∈ {1, 2, · · · , 8}) such that their centers Ci are equally distributed on the
circle ∂B(C0, R0) with C0 = (7, 4) and R0 = 12. It amounts to guessing that
Pz(O) lies within that circle.

Figures 2 to 7 show the xy-projection of the true obstacle within the waveguide
and the result of the reconstruction, both inside the circle ∂B(C0, R0), in the
following situations: for case 1 with either u∞0 or u∞1 , for case 2 with u∞0 ,
for case 3 with u∞0 , and for case 4 with either u∞0 or u∞1 (similar results are
obtained with the other values of n). No additional noise was added to the error
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Fig. 1. FEM computation of the total field u in
the case of two spheres (case 4)

naturally produced by the FEM computation which produced the simulated
values of u∞n .

These experiments reveal that only one 2D far field u∞n associated to only one
incident field ui enables one to locate the vertical projection of the obstacle
and to approximately find its size. The shape of the obstacle is however poorly
reconstructed.
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7 Conclusion

The method we have presented provides a reasonable approximation of the
vertical projection of an obstacle embedded in a finite depth ocean. One main
advantage is that no a priori knowledge concerning the boundary conditions on
the obstacle is required. Another advantage is that it can be carried out using
one single incident wave, and one single frequency. Results are satisfactory
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even if only one far field pattern is used for identification. As expected, the
results are worse than those obtained with techniques using several incident
waves, and a fortiori many of them, say for instance as with the linear sampling
method (see [6]). Furthermore, these results are also worse than those obtained
in free space, because of the presence of evanescent modes. Let say that our
method enables one to correctly obtain the horizontal position of the obstacle,
and to suggest a good idea of the size of its vertical projection.

It would be interesting, in order to complete the information on the shape
of the obstacle in the vertical direction, to carry out a method including two
steps, in particular for obstacles of revolution. The first step would consist of
determining the vertical projection of the obstacle with our method, and the
second would consist of identifying the shape of the obstacle in the vertical
direction with the help of a method like the one presented in [4].
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