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Our aim is to determine the acoustic field radiated by a source, in a fluid in flow, in time-
harmonic regime (e−iωt). Most of the works mentioned in literature deal with Euler’s linearized
equations: they have been widely used to perform temporal simulations using finite difference
methods [1, 2, 3, 4, 5, 6] or discontinuous Galerkin methods [7, 8]. It is more difficult to
solve Euler’s equations in time harmonic regime: the problem is to find a good treatment of
unbounded domains (selection of the outgoing solution). This is satisfactorily done only in the
case of a potential flow. Then acoustic perturbations are modelized by a scalar generalized
Helmholtz equation. Then if the flow is uniform far from the source, the problem can be solved
in a classical way, by coupling finite elements with integral [9] or modal [10] representation of
the far-field. Our choice is different and it seems to us more adapted to solve the problem with
finite elements in periodic regime. The equation we consider is due to Galbrun [11]. It is a
second order system involving the displacement perturbation.
Our method is valid in 3D but in order to simplify the presentation we will present the equa-
tions in a two-dimensional problem. An infinite duct Ω = {−∞ < x < +∞, 0 < y < h} whose
boundaries are rigid is considered. This duct is filled with a compressible fluid in a parallel and
subsonic flow, characterized by the Mach number profile, −1 < M(x2) < 1.
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In time-harmonic regime, the displacement perturbation is supposed to read

ℜe
(
u(x)e−iωt

)
, ω > 0

and we look for solving a problem of the following form (where f is a source supposed to be
compactly supported in the duct):

D2u−∇(divu) = f in Ω,
u · n = 0 on ∂Ω,

(1)

where we have introduced D the convective derivative operator defined by D = −ik +M ∂x1
(k = ω/c is the wave number, c the sound speed). The problem must be closed with radiation
conditions at infinity in order to select the outgoing solution. This is achieved thanks to the
use of the PML method (Perfectly Matched Layers) which allows to deal correctly with the
artificial boundary conditions of the numerical simulation domain [12]. To sum up, our aim is
to calculate the outgoing solution of (1) using finite elements and PMLs.
In the absence of flow (M = 0), it is known that Galbrun’s equation can not be discretized
thanks to Lagrange finite elements. The solutions to this problem developped in the literature
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consist either in using Raviart-Thomas elements, Hdiv-conforming, or in writing an equivalent
regularized formulation of the problem.
With a flow, the situation is more delicate. The variational formulation of Galbrun’s equation
involves the following bilinear form, whose principal part does not have a fixed sign:∫

Ωb

divu div v̄ −M(x2)
2 ∂u

∂x1
· ∂v̄
∂x1

− 2ikM(x2)
∂u

∂x1
· v̄ − k2u · v̄.

As a consequence there is no natural fonctional framework to formulate the problem, and
moreover, we did not succeed in introducing adapted finite elements (similar to the Raviart-
Thomas ones for the no-flow case). Such adapted finite elements have been proposed in a
mixed approach introducing the pressure as a new unknown [13, 14]. They were proved to lead
to stable mixed finite element in several applications. However a mixed formulation does not
help to deal satisfactorily with the selection of the outgoing solution. Our approach, based on
regularization, solves this last problem. In presence of a flow, we will be able to extend the
regularization method, but in a way more delicate to perform [15, 16]. This time the idea is to
consider temporarily ψ = curlu as a new unknown (which will be eliminated in the end):

D2u−∇(divu) + curl (curlu− ψ) = f (Ω),

u · n = 0 and curlu− ψ = 0 (∂Ω).
(2)

This equation can be written:
D2u−∆u = curlψ + f . (3)

Then this equation can be discretized thanks to classical Lagrange finite elements. Taking the
curl of Galbrun’s equation, we get the following relation between ψ and u (where M ′ stands
for the derivative of the Mach number with respect to x2 and curlf is taken equal to 0):

D2ψ − 2M ′D

(
∂u1
∂x1

)
= 0 (Ω). (4)

It is then possible to calculate ψ versus u thanks to a convolution formula ψ = Au1 along
the streamlines and to get a regularized problem versus u associated to good mathematical
properties [16]. In order to evaluate simply (by interpolation) the convolution formula in
x1, we use a structured mesh and quadrilateral-based Q2 elements. This formula raises two
difficulties:

• the convolution operator A, which links all the freedom degrees located on the same
streamline (x2=constant), leads to a matrix less sparse than a classical finite element
matrix [16].

• this formula degenerates when the Mach number vanishes, which happens often in practice
(close from the boundaries for instance). Note that this is not a problem for a theoretical
point of view (then we can simply set Au1 = 0 when M = 0). For a practical point of
view, the treatment of low Mach values is more delicate, since it requires the evaluation
of highly oscillating integrals.

Concerning the first point, since it is not worth eliminating the unknown ψ, we use the following
iterative algorithm initialized with ψ0 = 0:

• un+1 is calculated by inverting finite element matrices:

D2un+1 −∇(divun+1) + curl (curlun+1 − ψn) = f (ΩL),

un+1 · n = 0 and curlun+1 − ψn = 0 (∂ΩL)
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• ψn+1 is calculated thanks to a finite element matrix product with the vector associated
to un+1

1 :
ψn+1 = Aun+1

1 (ΩL).

We checked that this algorithm converges faster is the flow gradient is weaker, which is
not surprising since A vanishes for a uniform flow.

Concerning the second point, we have developed an approached model valid for flows whose
Mach number is low enough (but not necessarily small in practice). This model is obtained
by calculating an equivalent of the oscillating integral Au1 when M tends toward 0. Then we
show that we can replace the integral formula with the following differential formula

ψ =
2iM ′

k

∂u1
∂x1

,

whose discretization is much simpler, particularly in the 3D case. This formula can also be
deduced from (3) by replacingM with 0. However we keep Galbrun’s equation (2) withM ̸= 0:
this means that our approximation consists in considering a weak interaction between acoustics
and hydrodynamics for low Mach numbers while keeping a precise description of the acoustic
propagation.
To compute the outgoing solution, a PML formulation is considered [12]. Let ΩL be the bounded
domain composed of the physical domain Ωb and of surrounding layers ΩL

± of length L (see figure
1). The introduction of PML amounts to the transformation of the differential operator

∂

∂x1
−→ α(x1)

∂

∂x1
(5)

in the governing equations of the problem. The complex function α is assumed to be unity in
Ωb and, in order to simplify the subsequent study, constant and equal to the complex scalar
α∗, satisfying the following hypotheses

Re(α∗) > 0, Im(α∗) < 0, (6)

in Ω\Ωb (see [12] for a more thorough description and justification). More generally, the function
α depends on the variable x1 in the layers. Note that inverse upstream modes, not damped in

ΩL+Ωb

LL

Σ− Σ+ ΣL+ΣL− ΩL−

Figure 1: The bounded domain ΩL.

the upstream PML, cause instabilities in the case of temporal PML but not for time-harmonic
PML.
Thanks to the introduction of PML, we have showed numerically that the law Mach number
approximation (see figure 2 for a parabolic velocity profile 0.2 ≤ M ≤ 0.3 with a source at
mid-height) remains valid even for non-small Mach numbers (see figure 3 for the solution with
the exact model). In the exact model one can notice the presence of vortices downstream of the
source which are not taken into account in the approximated model. However these vorticies
do not produce acoustic radiation so that both models produce the same pressure field.
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Figure 2: Real part of u1, approximated model. Figure 3: Real part of u1, exact model.
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[12] E. Bécache, A.-S. Bonnet-Ben Dhia, and G. Legendre, Perfectly matched layers
for time-harmonic acoustics in the presence of a uniform flow, SIAM Journal on Numerical
Analysis, to appear.

[13] G. Gabard, R. J. Astley, and M. B. Tahar, Stability and accuracy of finite el-
ement methods for flow acoustics: II. Two-dimensional effects, International Journal for
Numerical Methods in Engineering, 63 (2005), pp. 974-987.

4



[14] F. Treyssede, G. Gabard, and M. B. Tahar, A mixed finite element method for
acoustic wave propagation in moving fluids based on an Eulerian-Lagrangian description,
JASA, 113 (2003), pp. 705-716.

[15] A.-S. Bonnet-Ben Dhia, G. Legendre, and E. Lunéville, Analyse mathématique
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