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Abstract

The linear wave equation does not describe the com-
plexity of the piano strings vibration enough for
physics based sound synthesis. The nonlinear cou-
pling between transversal and longitudinal modes has
to be taken into account, as does the “geometrically
exact” model. This system of equations can be clas-
sified among a general energy preserving class of sys-
tems. We present an implicit, centered, second order
accurate, numerical scheme that preserves a discrete
energy, leading to unconditional stability of the nu-
merical scheme. The complete model takes into ac-
count the bridge coupling the strings, and the ham-
mer non linear attack on the strings.

1 Non linear string vibrations

Observations on piano strings spectra have shown
that the linear wave equation is not enough to de-
scribe the physical phenomenon of piano strings vi-
bration. Unusual frequency series have been noticed,
which Conklin [2] called “phantom partials”. Using

Figure 1: Displacement of one string point :
transverse motion u and longitudinal motion v.

a non linear geometric description of the transver-
sal and longitudinal motions of the string leads to
the “geometrically exact” model (see Morse & In-
gard [5]). We use adimensionned variables, let E be
the Young’s modulus, A the section and T0 the rest
tension of the string, and define α = EA−T0

EA
.

The system can be written:
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This system is a particular case of:
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where H : R
N → R. String model corresponds to

N = 2, u = (u, v) and

H(u, v) =
1

2
u2 +

1

2
v2 − α[

√

u2 + (1 + v)2 − (1 + v)] (2)

This quasilinear system is hyperbolic when H is con-
vex, which is the case with (2) for small values of
(u, v). The theory for these equations is now well
known, see Li TaTsien [4]. An important result is
the energy conservation for this general type of sys-
tems:

Theorem 1. Let u be a sufficiently smooth solution
of (1). Then it satisfies :
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Energy preservation can lead to H1 stability on the
solution, under a coercivity condition on H.

2 Energy preserving scheme

A classic way of building stable numerical schemes for
PDEs is to preserve, on a discrete level, a continuous
conserved quantity, like an energy for instance. If this
is relatively easy and well-known for scalar equations
(N = 1, see Furihata [3]), this is less obvious for
systems for which existing solutions that we found
in the litterature (see for instance Bilbao [1]) seem



to be limited to specific hamiltonians. In the general
case, we developped an implicit, energy preserving
scheme which is also centered in time. The scheme
can be written for any value of N and any function H.
It is second order accurate, unconditionnally stable
and its algebraic complexity grows as 2N−1. The
scheme is based on a variational approach which can
lead to finite elements for space variable. The main
difficulty remains in the time discretisation, which we
based on finite differences. In the following, Vh is a
finite dimensional subspace of H1

0 , uk,h denotes the
kth coordinate of the discrete solution uh (k ∈ [1,N ]).
For simplicity, we will write abusively H(uk, ul 6=k) for
H(u). Next, we define the directional finite difference

δkH(uk,1, uk,2;ul 6=k) :=
H(uk,1, ul 6=k) − H(uk,2, ul 6=k)

uk,1 − uk,2

This will be used in the discretisation of the kth equa-
tion of (1) with uk,1 = un+1

k,h and uk,2 = un−1
k,h . The

difficult point is to decide a which times the N − 1
other quantities ul 6=k are taken. The choice is made
in order to preserve a discrete energy.

Let us introduce

Σk =
{

σ : Jk → {−1,+1}, Jk = {1, · · · , N} \ {k}
}

and for σ ∈ Σk, define

θ(σ) = µ(σ)! (N − 1 − µ(σ))! / N !

where µ(σ) = #
{

l ∈ Jk, σ(l) = +1
}

.

The scheme can be written, for any vh ∈ Vh:
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where
∮

refers to any chosen numerical integration.

The main theoretical property of this scheme is:

Theorem 2. Our scheme preserves the energy:
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3 Coupled strings and hammer

Piano strings are mostly grouped by three in order to
produced one note. The coupling point is the bridge
at which there is actually a displacement, that is the
same for all the strings. For now, we modelled this
motion by a simple damped oscillating movement,
expecting a better modelisation in the future. The
hammer has also been taken into account, coupled
with strings by a damped non linear law with hys-
teresis. Figure (2) shows the conservation of total
energy (full black line) without any damping, and
the evolution of internal energies (hammer, string,
bridge) according to the time steps.

Figure 2: Energy values according to time steps.
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