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MATHEMATICAL ANALYSIS OF THE JUNCTION OF TWO
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Abstract. The present paper concerns the scattering of a time-harmonic acoustic wave by the
junction of two open uniform waveguides, where the junction is limited to a bounded region. We
consider a two-dimensional problem for which wave propagation is described by the scalar Helmholtz
equation. The main difficulty in the modeling of the scattering problem lies in the choice of conditions
which characterize the outgoing behavior of a scattered wave. We use here modal radiation conditions
which extend the classical conditions used for closed waveguides. They are based on the generalized
Fourier transforms which diagonalize the transverse contributions of the Helmholtz operator on both
sides of the junction. We prove the existence and uniqueness of the solution, which seems to be the
first result in this context. The originality lies in the proof of uniqueness, which combines a natural
property related to energy fluxes with an argument of analyticity with respect to the generalized
Fourier variable.
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1. Introduction. A uniform waveguide may be defined as a propagative medium
whose physical features are invariant in one longitudinal direction so that waves can
propagate in this direction and remain confined to a limited region in the orthogonal
transverse direction(s). Such a waveguide is said to be open when the cross-section
is unbounded; the confinement is then due to a particular arrangement of the inho-
mogeneities which allows an evanescent behavior of guided waves in the transverse
direction(s). In the present paper, we are concerned with the modeling and mathe-
matical analysis of the junction of two different open waveguides, which covers many
physical applications in areas such as electromagnetism (junction of optical fibers, or
between a fiber and an integrated optical device), acoustics (immersed junction of
pipelines), elastodynamics (seismic waves in two layered media separated by a rift),
and hydrodynamics (water waves guided by a varying cross-section ocean trench).
Figure 1.1 illustrates two examples of junctions which will be considered in the paper,
called abrupt and thick, depending on whether the part which contains the variable
cross-section has a zero thickness or not.

The physical problem we are interested in can be expressed in a very simple way:
consider an incident guided wave on one side of the junction; what happens to this
wave when it meets the junction? It seems clear that the interaction of this incident
wave with the junction will produce three kinds of waves: these are a reflected guided
wave which propagates in the direction opposite to the incident wave, a transmitted
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Fig. 1.1. Examples of abrupt (left) and thick (right) junctions of waveguides (the different
levels of gray and hatching represent different homogeneous media).

guided wave in the other side of the junction, and finally a wave which radiates in the
transverse direction(s). Nevertheless the mathematical modeling of this apparently
simple problem is far from obvious. What kind of radiation condition can describe the
outgoing behavior of a scattered wave? The question is well understood in the case of
a closed waveguide (that is, when the cross section is bounded, for instance, in Figure
1.1, when the hatching represents a nonpenetrable medium). Indeed, in a uniform
closed waveguide, a wave can be described as a discrete superposition of guided and
evanescent modes, which leads us to interpret a junction by means of the modal
transmission and reflection coefficients. To a certain extent, the radiation conditions
we shall use generalize such a description to open waveguides. The main issue we shall
deal with is proving that, with these conditions, the propagation equations become
well-posed. Such a result may seem surprising for those who are familiar with closed
waveguides. Indeed, the uniqueness of the solution rules out the existence of trapped
modes for a junction of open waveguides, whereas such modes are known to occur in
perturbed closed waveguides (see, e.g., the review paper [15] as well as Remark 4.10).

Our study falls within the general framework of scattering of time-harmonic waves
by unbounded inhomogeneities, among which one can distinguish a category of media
gathered under the word “rough” (rough surfaces, rough layers, etc.), which garnered
significantly increased interest in recent years as evidenced in the applied mathemat-
ical literature (see, e.g., [4, 5, 13] and the references cited therein). Although there is
no precise definition of this word, it usually designates a perturbation of a medium
invariant in some longitudinal direction(s), where the perturbation is localized in the
transverse direction (finite amplitude) but not in the longitudinal one. In this sense,
a junction of waveguides could be seen as a rough medium. But all the results of
existence and uniqueness of a solution obtained in this context concern cases where
guided modes do not exist. In these cases, it is enough to impose a radiation con-
dition in the transverse direction(s), which amounts to saying that the wave can be
represented as a superposition of plane waves (propagative and evanescent) which
are outgoing in the transverse direction(s). But when guided modes do exist, such
a condition cannot distinguish between incoming and outgoing guided waves in the
longitudinal direction. As a consequence, it is not adapted to the situation we focus
on in the present paper (see section 5 for additional comments on this topic).

Various solutions have been proposed for open waveguides. In the case of a three-
dimensional layered medium, Xu [21, 22] uses a decomposition of the scattered field
into a finite sum of guided waves and a “free” wave and imposes separately for each
of them a usual Sommerfeld radiation condition with the appropriate wavenumber.
Ciraolo and Magnanini [6, 7] introduce a similar radiation condition based on the
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same decomposition of the scattered field using a weaker form of Sommerfeld condi-
tions for the various components. Following a slightly different idea, Jerez-Hanckes
and Nédélec [12] propose dividing the propagative medium into two regions (close to
and far from the core of the guide) and imposing on each of them Sommerfeld-type
conditions. It is likely that all these different conditions are equivalent, and all lead
to the well-posedness of the propagation equations. However, it seems that for waveg-
uides with a local (but not small) perturbation, the uniqueness proofs proposed in the
above-mentioned papers [6, 21] are incomplete, for they do not deal with the possible
evanescent component of a scattered wave.

In the present paper, we use the modal radiation condition introduced in [1],
which amounts to saying that a scattered wave appears as a superposition of guided
and radiation modes which are outgoing in the longitudinal direction. This condition
is based on the generalized Fourier transform associated with the transverse part
of the propagation equation, which appears as a very efficient theoretical tool for
studying scattering problems in a uniform waveguide, especially as regards the proof
of uniqueness. We reinforce here this assertion: the use of this transform allows us
to prove the solvability of the scattering by a thick junction of uniform waveguides,
which is, to the best of our knowledge, the first proof proposed in this context.

As in [1], we consider here a simple two-dimensional acoustic model. For the sake
of simplicity, we assume that the problem is symmetric with respect to a longitudinal
axis, so that it can be set in a half-plane Ω := {(x, z) ∈ R

2; z > 0}, where x (re-
spectively, z) defines the longitudinal (respectively, transverse) direction. We denote
by Γ := R × {0} the symmetry axis. For a given frequency, wave propagation is
described by a bounded positive wavenumber function k = k(x, z) which is assumed
to be a localized perturbation of a reference function k� = k�(x, z) in the sense that

k(x, z)− k�(x, z) is compactly supported in [−a,+a]× [0, b]

for some positive numbers a and b, and where k� is defined by

(1.1) k�(x, z) := k±(z) if x ∈ R
±, where k±(z) :=

{
k0 if 0 < z < h±,
k∞ if z > h±,

and both k0 and k∞ are positive real numbers. As shown in Figure 1.2, function k�
corresponds to an abrupt junction of two semi-infinite waveguides made with the same
materials but whose cores have different heights (respectively, h− and h+), whereas
k can represent a smooth (thick) junction of the same waveguides, or a penetrable
defect in the abrupt junction. We use here the word “waveguide,” which may be
somewhat improper since the existence of guided waves is subject to some condition
on k0 and k∞, namely, that k20 − k2∞ > π2/(2h±)2 (see the appendix). However, this
assumption is not crucial. All of the results of the paper hold for nonguiding devices.

The problem we are interested in is then defined as follows: considering a given
excitation f assumed compactly supported, find the outgoing solution u to

−Δu− k2 u = f in Ω,(1.2)

u = 0 on Γ.(1.3)

We shall give a complete definition of this problem in section 2. First, we make
precise in section 2.1 the meaning of the word outgoing: on each side of the junction,
we use the above-mentioned modal radiation condition expressed by means of the
corresponding generalized Fourier transform. We then introduce in section 2.2 the
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Fig. 1.2. Our models of abrupt (left) and thick (right) junctions.

functional space in which u will be sought. In section 2.3, we complete the definition
of our scattering problem, which may also model the case of an incident wave, and
state the main result of the paper (Theorem 2.3) about the well-posedness of the
problem. The idea of the proof is to consider the thick junction as a perturbation
of the abrupt one, which leads us to rewrite our scattering problem as a Lippmann–
Schwinger equation. The fact that Fredholm’s alternative applies follows from the
solvability of the scattering problem for the abrupt junction, which is the object of
section 3. And uniqueness is proved in section 4.

The analysis of the abrupt junction presented in section 3 combines and extends
the ideas developed on one hand in [1] for a uniform waveguide, and on the other hand
in [2] for an abrupt junction. The idea is to split the acoustic field into two parts.
The first part represents the solution of a radiation problem for two uncoupled semi-
infinite waveguides, whose properties, collected in section 3.1, essentially follow from
[1]. The second part is a correction which takes into account the coupling between
both waveguides, which leads to a coupling equation set on the junction line Σ (see
Figure 1.2) that was partly studied in [2]. Section 3.2 completes this study.

The originality of the paper is mainly contained in section 4, which explains the
proof of uniqueness for the thick junction. The general idea of the proof is similar to
[1]. The first step is based on an energy argument. We show in section 4.1 that if there
is no excitation, then the energy flux across any infinite transverse section situated
outside the junction vanishes, which implies that in the modal decomposition of the
acoustic field, the components associated with propagative modes vanish. Following
the method proposed in [20] and reformulated for the generalized Fourier transform
in [1], the trick then consists in using an analyticity argument to deduce that the
other components of the field, associated with evanescent modes, also vanish. But
the implementation of this second step is far more intricate for the junction than for
a perturbed uniform waveguide because of the use of both generalized Fourier trans-
forms associated with both semi-infinite waveguides. We need a preliminary study
of the decay properties of the solution in the transverse direction (section 4.2). The
analyticity is then deduced from the above-mentioned coupling equation (section 4.3).

We conclude the paper with some comments about our method: these include
criticisms, conjectures, and possible generalizations of the method.

2. Definition of the scattering problem.

2.1. Modal radiation conditions. In many physical textbooks (see, e.g., [19]),
it is generally admitted that in an open uniform waveguide, any time-harmonic wave
can be represented as the sum of a finite superposition of guided modes and a contin-
uous superposition of radiation modes, where both superpositions involve right-going
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and left-going modes. The radiation conditions we shall use here are based on such
decompositions in both semi-infinite waveguides located on both sides of the junction
(i.e., for |x| ≥ a): the idea is simply to keep the outgoing components, that is, the
right-going modes for x > a and the left-going ones for x < −a. The mathematical
tool that allows us to justify these decompositions is the generalized Fourier transform
associated with the transverse part of the propagation equations. We summarize here
the main results of this transform. More details can be found in [1, 11].

The modes are obtained by the method of separation of variables applied to the
propagation equations (1.2)–(1.3) restricted to the right or left semi-infinite waveguide
located outside the junction, i.e.,

−Δu− k±(z)2 u = 0 in {(x, z) ∈ Ω; ±x > a},(2.1)

u(x, 0) = 0 for ± x > a,(2.2)

where k±(z) is defined in (1.1). Setting u(x, z) = ϕ(z) exp(γx), we are led to find
λ = γ2 ∈ C and ϕ �= 0 such that

−ϕ′′ − k±(z)2 ϕ = λ ϕ in R
+,(2.3)

ϕ(0) = 0.(2.4)

In other words, we search for the spectral elements of the unbounded self-adjoint
operator A± defined in L2(R+) by

(2.5) A±ϕ := −ϕ′′ − k±(z)2 ϕ ∀ϕ ∈ D(A±) := H2(R+) ∩H1
0 (R

+),

where we use standard notation for the Sobolev spaces Hs and Hs
0 . Its spectrum Λ±

is composed of two parts: a continuous spectrum Λ±
c = Λc := [−k2∞,+∞) and a finite

point spectrum Λ±
p which is nonempty if and only if k20 − k2∞ > π2/(2h±)2 (in this

case, Λ±
p ⊂ (−k20 + π2/(2h±)2,−k2∞); see (A.1)). For all λ ∈ Λ±, the solutions to

(2.3)–(2.4) form a one-dimensional space spanned by some function Φ±
λ (z). We show

in the appendix the expression of a family {Φ±
λ (z); λ ∈ Λ±} which has the remarkable

property that for each z, Φ±
λ (z) extends to an entire function of λ ∈ C. Notice that if

λ ∈ Λ±
p , the function Φ±

λ belongs to D(A): it is an eigenfunction associated with the

eigenvalue λ. On the other hand, if λ ∈ Λc, then Φ±
λ no longer belongs to L2(R+): it

is often called a generalized eigenfunction.
The family {Φ±

λ ; λ ∈ Λ±} satisfies some orthogonality and completeness proper-
ties which can be stated precisely by introducing the associated generalized Fourier
transform, that is, the operator of “decomposition” on this family, given by

(2.6) (F±ϕ)(λ) :=
∫
R+

ϕ(z)Φ±
λ (z) dz ∀λ ∈ Λ±,

for all ϕ ∈ L2(R+) with compact support. Using a density argument, F± extends to
a unitary transformation from L2(R+) to a spectral space of the form L2(Λ±; dμ±),
which denotes the space of square integrable functions on Λ± for the measure dμ± :=∑

λ∈Λ±
p
ρ±λ δλ + ρ±λ dλ|Λc , where δλ is the Dirac measure at λ ∈ Λ±

p , dλ|Λc is the

Lebesgue measure restricted to Λc, and ρ
±
λ is a weight function (see (A.2)). In other

words, a function ϕ̂ : Λ± 	→ C belongs to L2(Λ±; dμ±) if

‖ϕ̂‖2L2(Λ±;dμ±) :=

∫
Λ±

|ϕ̂(λ)|2 dμ(λ) =
∑
λ∈Λ±

p

ρ±λ |ϕ̂(λ)|2 +

∫
Λc

|ϕ̂(λ)|2 ρ±λ dλ <∞.
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The inverse transform F−1
± appears as the operator of “recomposition” on the family

{Φ±
λ ; λ ∈ Λ±}: for all ϕ̂ ∈ L2(Λ±; dμ±),

(2.7) F−1
± ϕ̂ =

∫
Λ±

ϕ̂(λ)Φ±
λ dμ±(λ) =

∑
λ∈Λ±

p

ρ±λ ϕ̂(λ)Φ
±
λ +

∫
Λc

ϕ̂(λ)Φ±
λ ρ

±
λ dλ.

If ϕ̂ = F±ϕ for ϕ ∈ L2(R+), this formula yields the decomposition of ϕ on the family
{Φ±

λ ; λ ∈ Λ±} which may be seen as a generalized orthonormal basis.
An essential property of F± is that it diagonalizes A± in the sense that A±ϕ =

F−1
± λF± ϕ for all ϕ ∈ D(A±). Hence, if we apply formally F± to (2.1)–(2.2) (which

has to be justified since u(x, ·) /∈ D(A±) in general; see section 2.2), we obtain

− ∂2

∂x2
F±u(x, λ) + λF±u(x, λ) = 0 for± x > a and λ ∈ Λ±.

For all λ ∈ Λ±, the solutions of this differential equation are linear combinations

of exponential functions: F±u(x, λ) = α̂±(λ) e−
√
λ (|x|−a) + β̂±(λ) e+

√
λ (|x|−a) for

±x > a. Using (2.7), we deduce that

(2.8) u(x, z) =

∫
Λ±

{
α̂±(λ) e−

√
λ (|x|−a)Φ±

λ (z) + β̂±(λ) e+
√
λ (|x|−a)Φ±

λ (z)
}
dμ±(λ)

for ±x > a. This formula is nothing but the above-mentioned decomposition of u into
a finite superposition of guided modes, associated with the point spectrum Λ±

p , and a
continuous superposition of radiation modes, associated with the continuous spectrum
Λc. In order to distinguish outgoing and incoming modes, we have to make precise
the definition of

√
λ. Throughout the paper, we shall use the following definition of

the complex square root (where the branch cut is chosen on iR+):

(2.9)
√
ζ := |ζ|1/2 ei(arg ζ)/2 for ζ ∈ C with − 3π/2 < arg ζ ≤ π/2.

In particular, for a negative λ ∈ Λ±, we have
√
λ = −i|λ|1/2. As a consequence,

if we assume a time-dependence in the form e−iωt, we see that for λ < 0, function

e−
√
λ (|x|−a)Φ±

λ (z) represents a propagative outgoing mode, and e+
√
λ (|x|−a)Φ±

λ (z) is
incoming. And for λ > 0, the former is evanescent as |x| → ∞, whereas the latter
is exponentially increasing. This justifies the following definition of our outgoing
radiation conditions, which simply consists in keeping outgoing or evanescent modes
in the decomposition of u.

Definition 2.1. We say that a solution u to (2.1)–(2.2) satisfies the modal
radiation conditions (R±) if there exist two functions α̂± : Λ± 	→ C such that

F±u(x, λ) = α̂±(λ) e−
√
λ (|x|−a) for ± x ≥ a and λ ∈ Λ±.

2.2. Functional framework. In this paragraph, we focus on the functional
space in which we shall search for the solution to (1.2)–(1.3). The first difficulty
concerns Definition 2.1, which makes sense only if F± can actually be applied to
u(x, ·) for all x such that ±x ≥ a. But this function does not belong to L2(R+) in
general (think of the case of a homogeneous medium, i.e., k0 = k∞, for which we
have u(x, z) = O(z−1/2) for fixed x). It is shown in [11] that, as the usual Fourier
transform, each generalized Fourier transform F± extends to an isomorphism from a
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space of “physical” distributions to a space of “spectral” distributions, both similar
to the Schwartz space S ′(R). More precisely, these extensions hold if

(2.10) k20 − k2∞ �=
(
n+

1

2

)2
π2

(h±)2
∀n ∈ N,

which rules out the cutoff frequencies of both waveguides. With this condition, the
application of F± to (2.1)–(2.2) (which yields (2.8)) is easily justified by assuming
that u(x, ·) is in the proper distribution space for each x.

However, for technical reasons which will appear in what follows, such an assump-
tion is not sufficient for our purposes. Indeed, we shall assume that for each x, u(x, ·)
belongs to some space (see Definition 2.2 below) which is closely related to the notion
of energy flux. To see this, let Σ±a := {±a} × R+ denote the transverse sections
located at x = ±a, and consider the integral

∫
Σ±a

(∂u/∂|x|)udz, whose imaginary

part is known to represent the longitudinal energy flux across Σ±a. Using formally a
Parseval-like equality (recall that F± is unitary) and the modal radiation conditions
(R±), which show that F±u(±a, λ) = α̂±(λ) and (∂/∂|x|)F±u(±a, λ) = −√

λ α̂±(λ),
we obtain ∫

Σ±a

∂u

∂|x| udz =

∫
Λ±

∂F±u
∂|x| (±a, λ)F±u(±a, λ) dμ±(λ)(2.11)

=

∫
Λ±

−
√
λ |α̂±(λ)|2 dμ±(λ).(2.12)

Hence, assuming that the integral of the left-hand side is bounded amounts to assum-
ing that F±u(±a, ·) = α̂± belongs to the space

(2.13) V̂± :=
{
ϕ̂ : Λ± 	→ C; |λ|1/4ϕ̂(λ) ∈ L2(Λ±; dμ±)

}
.

In this case, (∂/∂|x|)F±u(±a, λ) = −√
λ α̂±(λ) belongs to

V̂ ′
± :=

{
ϕ̂ : Λ± 	→ C; |λ|−1/4ϕ̂(λ) ∈ L2(Λ±; dμ±)

}
.

These spaces can be equipped, respectively, with the norms

(2.14) ‖ϕ̂‖
̂V± := ‖|λ|1/4ϕ̂‖L2(Λ±;dμ±) and ‖ϕ̂‖

̂V ′
±
:= ‖|λ|−1/4ϕ̂‖L2(Λ±;dμ±).

Moreover, V̂ ′± appears as the dual space of V̂± by considering the duality product

〈ϕ̂, ψ̂〉
̂V ′
±,̂V± := (|λ|−1/4ϕ̂ , |λ|+1/4ψ̂)L2(Λ±;dμ±) ∀ϕ̂ ∈ V̂ ′

±, ∀ψ̂ ∈ V̂±.

None of these spaces are contained in L2(Λ±; dμ±), but it is shown in [1] that they are
both embedded in the above-mentioned space of spectral distributions. This allows
us to define

V± := F−1
± (V̂±) and V ′

± := F−1
± (V̂ ′

±),

which can be equipped with the corresponding norms

‖ψ‖V± := ‖F±ψ‖̂V± =
∥∥∥|λ|+1/4F±ψ

∥∥∥
L2(Λ±;dμ±)

∀ψ ∈ V±,

‖ϕ‖V ′
± := ‖F±ϕ‖̂V ′

±
=

∥∥∥|λ|−1/4F±ϕ
∥∥∥
L2(Λ±;dμ±)

∀ϕ ∈ V ′
±.
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These spaces are clearly dual one to each other, using the duality product defined by

〈ϕ, ψ〉V ′
±,V± = 〈F±ϕ,F±ψ〉̂V ′

±,̂V± ∀ϕ ∈ V ′
±, ∀ψ ∈ V±,

which is nothing but the proper formulation of the Parseval-like equality (2.11). Let
us finally mention the following continuous embeddings [17]:

(2.15) H1/2(R+) ⊂ V± ⊂ H
1/2
loc (R

+),

where, for an unbounded domain X ∈ Rn, we denote by Hs
loc(X) the set of functions

whose restrictions to all bounded Y ⊂ X belong to Hs(Y ).
We shall search for a solution to (1.2)–(1.3) which satisfies u(x, ·) ∈ V± for all

x ∈ R±, which leads us to the following definition (see some comments about this
functional framework in section 5).

Definition 2.2. Let Ω± := R± × R+ denote the domains corresponding to the
right and left semiwaveguides of the abrupt junction. Define

H± :=
{
u ∈ H1

loc(Ω
±); u(x, ·) ∈ V± ∀x ∈ R

±}
,

H :=
{
u ∈ H1

loc(Ω); u|Ω− ∈ H− and u|Ω+ ∈ H+
}
.

2.3. Main results. We can now give a precise definition of our scattering prob-
lem, which may model not only the response of the junction to a localized excitation
f ∈ L2(Ω) but also its response to a given incident wave. For the sake of simplicity,
we consider only the case of an incident wave coming from the left, for instance, an

incoming guided mode e−
√
λx Φ−

λ (z) for λ ∈ Λ−
p , or more generally an incoming su-

perposition of propagative guided and radiation modes, as described by (2.8), where
we choose α̂− = 0. Such a superposition can be written equivalently as

(2.16) u0(x, z) = F−1
−

(
e−

√
λ xβ̂0

)
(z),

where we assume that β̂0 ∈ V̂− has a compact support contained in Λ−∩R− (without

this assumption, the above expression does not necessarily make sense since e−
√
λ x

is exponentially increasing as λ → +∞ or x → −∞). Such a u0 can represent a
(non-Gaussian) beam coming from some oblique direction (note that the generalized
Fourier transform allows us to extend the notion of a beam to stratified media). Then
our scattering problem is

(P )

⎧⎪⎪⎨⎪⎪⎩
Find u ∈ H such that
−Δu− k2 u = f in Ω,
u = 0 on Γ,
u− u0 satisfies (R−) and u satisfies (R+),

where we recall that the radiation conditions (R±) are defined in Definition 2.1. Ap-
parently this formulation of the scattering problem does not contain any condition on
the behavior of u in the transverse direction. Actually such a condition is hidden in
the definition ofH. But this condition is neither a radiation condition in the transverse
direction (it does not distinguish between outgoing and incoming waves in the trans-
verse direction) nor a decay condition (in particular, it allows for some slowly decaying
oscillating behavior due to the possible singularity of F±u(x, ·) at λ = 0; see (2.13)).

The aim of this paper is to prove the following result.
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Theorem 2.3. On the assumption (2.10), for all f ∈ L2(Ω) with support con-

tained in [−a,+a]× [0, b], and all incident waves u0 given by (2.16), where β̂0 ∈ V̂−
has a compact support contained in Λ−∩R

−, problem (P ) has a unique solution which
depends continuously on f and u0 in the sense that there exists C > 0 such that

(2.17) ‖u(x, ·)‖V± ≤ C
(
‖f‖L2(Ω) + ‖β̂0‖̂V−

)
∀x ∈ R

±

(where ‖ · ‖
̂V− is defined in (2.14)), and for all bounded domains O ⊂ Ω, there exists

C(O) > 0 such that

(2.18) ‖u‖H1(O) ≤ C(O)
(
‖f‖L2(Ω) + ‖β̂0‖̂V−

)
.

The proof is based on a perturbation approach which consists in considering
our thick junction of waveguides as a perturbation of an abrupt junction of the same
waveguides, just as we defined k as a perturbation of k� (see (1.1)). We thus introduce
the following scattering problem for the abrupt junction:

(P�)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Find u� ∈ H such that

−Δu� − k2� u� = f� in Ω,

u� = 0 on Γ,

u� − u0 satisfies (R−) and u� satisfies (R+).

Section 3 is devoted to the proof of the following theorem.
Theorem 2.4. The statement of Theorem 2.3 is valid for problem (P�).
This result ensures the existence of a continuous operator T which maps the pair

of data (f�, β̂0) to the unique solution u� = T (f�, β̂0) to (P�). Going back to our initial
problem (P ), we can rewrite the Helmholtz equation as −Δu−k2� u = f+(k2−k2�)u in

Ω, which shows that u = T (f + (k2 − k2�)u, β̂0). As a consequence, if Ω0 ⊂ Ω denotes
a bounded domain which contains the support of the perturbation (i.e., the support
of k2 − k2�) and the support of f, and K is the operator defined on L2(Ω0) by

Kv := {T ((k2 − k2�)v, 0)}|Ω0 ∀v ∈ L2(Ω0),

then the restriction of u to Ω0 (still denoted by u for simplicity) is a solution to

(2.19) (I −K)u = {T (f, β̂0)}|Ω0 in L2(Ω0).

And conversely, if u is a solution to (2.19), it is readily seen that T (f+(k2−k2�)u, β̂0)
is an extension of u to the whole domain Ω, which is a solution to (P ). In other words,
(P ) is equivalent to the Lippmann–Schwinger equation (2.19).

Notice now that Theorem 2.4 implies that K can be considered as a continuous
operator from L2(Ω0) to H

1(Ω0). Therefore, as Ω0 is bounded, the compact embed-
ding of H1(Ω0) into L2(Ω0) shows that K is a compact operator in L2(Ω0). Thus
(2.19) comes within Fredholm’s alternative: the existence of a solution follows from
its uniqueness. Thanks to the equivalence between both problems, this latter prop-
erty results from the uniqueness of the solution to (P ) proved in section 4. Finally,
the stability properties (2.17) and (2.18) are just consequences of the same stability
properties for (P�) and the continuity of (I −K)−1.
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3. Analysis of the abrupt junction. The proof of Theorem 2.4 is based on
a decomposition of the acoustic field into two parts: u� = u1 + u2. The first part,
u1, represents the field generated by the same source f� in both semiwaveguides
Ω± := R± × R+, which are uncoupled by imposing a Dirichlet condition on the
junction line Σ := {0} × R

+. The second part, u2, is a corrective term which takes
into account the coupling between both semiwaveguides. For the latter, the support of
the source is reduced to Σ, which leads us to a coupling equation formulated on Σ. This
decomposition allows us to use existing results associated with each part [1, 2, 17].

For a function v defined in Ω, we denote by v± := v|Ω± its restrictions to Ω± and
by [v]Σ := v+|Σ−v−|Σ its jump across Σ. Problem (P�) can be formulated equivalently
by writing the equations satisfied by u±� separately, together with the transmission
conditions

[u�]Σ = 0 and

[
∂u�
∂x

]
Σ

= 0,

which express the coupling between both waveguides. Replacing them by a Dirichlet
condition leads to two uncoupled problems (P±

1 ) defined by

(P±
1 )

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Find u±1 ∈ H± such that

−Δu±1 − k±(z)2 u±1 = f±
� in Ω±,

u±1 = 0 on Γ± := R± × {0},
u±1 = 0 on Σ,

u±1 satisfies (R±),

where we have chosen to remove the incident wave. Hence, u� = u1 + u2 will be a
solution to (P�) if and only if u2 is a solution to

(P2)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Find u2 such that u±2 ∈ H± and

−Δu±2 − k±(z)2 u±2 = 0 in Ω±,
u±2 = 0 on Γ±,
[u2]Σ = 0 and [∂u2/∂x]Σ = − [∂u1/∂x]Σ ,

u−2 − u0 satisfies (R−) and u+2 satisfies (R+).

In sections 3.1 and 3.2, we deal successively with (P±
1 ) and (P2): we show that both

problems are well-posed (which proves Theorem 2.4) and collect some properties of
their respective solutions which will be used in section 4.

3.1. The uncoupled problems. Most results stated here are deduced from the
case of an infinite uniform waveguide by a symmetry argument (with respect to Σ).

Proposition 3.1. On the assumption (2.10), for all f±
� ∈ L2(Ω±) with support

contained in {0 ≤ ±x ≤ a}× [0, b], problem (P±
1 ) has a unique solution which depends

continuously on f±
� in the sense that there exists C > 0 such that

(3.1) ‖u±1 (x, ·)‖V± ≤ C ‖f±
� ‖L2(Ω±) ∀x ∈ R

±,

and for all bounded domain O ⊂ Ω±, there exists C(O) > 0 such that

(3.2) ‖u±1 ‖H1(O) ≤ C(O) ‖f±
� ‖L2(Ω±).

Proof. Consider, for instance, the right-hand semi-infinite waveguide Ω+, and
suppose that instead of the Dirichlet boundary condition on Σ, this waveguide is con-
tinued on the left-hand side so that it becomes a uniform infinite waveguide. Consider
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then the corresponding radiation problem, i.e., the same problem as (P�) where k� is
replaced by k+, f� is replaced by f+

� , and u0 = 0. We know (see Propositions 3.1 and
3.3 of [1]) that its solution, denoted by uref , is unique and has the following integral
representation:

(3.3) uref(x, z) =

∫
Ω+

G+(x, z ;x′, z′) f+
� (x′, z′) dx′ dz′,

where G+ is the Green’s function of the uniform waveguide, given by

G+(x, z ;x′, z′) :=
∫
Λ+

1

2
√
λ
e−

√
λ|x−x′| Φ+

λ (z)Φ
+
λ (z

′) dμ+(λ).

Moreover, uref belongs to H1
loc(Ω), is such that uref(x, ·) ∈ V+ for all x ∈ R, and

satisfies stability estimates similar to (3.1)–(3.2). To conclude, we simply have to
notice that u+1 (x, z) := uref(x, z)−uref(−x, z) is the only solution to (P+

1 ). Of course,
the same idea applies to (P−

1 ).
We will need in what follows some properties of the solution to (P±

1 ), which are
collected in the following proposition.

Proposition 3.2. If u±1 is the solution to (P±
1 ), then the following hold:

(i) It belongs to L∞(Ω±).
(ii) When z → +∞, we have

(3.4) u±1 (x, z) = O

( |x|
z3/2

)
,
∂u±1
∂x

(x, z) = O

(
1

z3/2

)
, and

∂u±1
∂z

(x, z) = O

(
1

z1/2

)
,

where the last two asymptotic behaviors hold uniformly with respect to x in a bounded
domain.

(iii) ∂u±1 /∂x(x, ·) ∈ V ′
± for all x ∈ R±, and there exists C > 0 such that

(3.5)

∥∥∥∥∂u±1∂x (x, ·)
∥∥∥∥
V ′
±

≤ C ‖f±
� ‖L2(Ω±) ∀x ∈ R

±.

(iv) For all fixed x ∈ R±, functions F±u±1 (x, λ) and (∂/∂x)F±u±1 (x, λ) extend
to analytic functions of λ ∈ C \ iR+.

Proof. Again, for u+1 (and similarly for u−1 ), these properties can be deduced from
those of uref defined in (3.3). Items (i) and (ii) are stated in [1] except for the behavior
of u±1 in (3.4): we actually have uref(x, z) = O(z−1/2). To obtain the announced result,
we use the fact that u+1 (0, z) = 0 and the behavior of ∂u+1 /∂x which yield∣∣u+1 (x, z)∣∣ = ∣∣∣∣∫ x

0

∂u+1
∂x

(t, z) dx

∣∣∣∣ ≤ |x| sup
t∈[0,x]

∣∣∣∣∂u+1∂x (t, z)

∣∣∣∣ = O

( |x|
z3/2

)
.

Item (iii) is proved by a straightforward adaptation of the proof of [1, Proposition
3.3]. Finally, (iv) is also proved in [1], but we recall the idea here, since this property
plays a crucial role in section 4. We simply have to note that (3.3) can be written
equivalently as

F+uref(x, λ) =

∫
Ω+

e−
√
λ|x−x′|

2
√
λ

Φ+
λ (z

′) f+
� (x′, z′) dx′ dz′.

On one hand, Φ+
λ (z) extends to an entire function of λ ∈ C (see the appendix),

and on the other hand,
√
λ is analytic in C \ iR+ (by virtue of our choice (2.9) of

a determination of the complex square root). The conclusion follows, since f+
� is

compactly supported. The same argument applies for (∂/∂x)F±u±1 (x, λ).
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3.2. The coupling problem. In order to construct a solution to (P2), first
suppose that we know φ := u2|Σ (which is well defined since [u2]Σ = 0). Then,
following the reasoning of section 2.1, we can solve the equations satisfied by u±2 in
both semi-infinite waveguides Ω±. We obtain formally

(3.6) u−2 − u0 = F−1
−

{
e+

√
λ x

(
F−φ− β̂0

)}
and u+2 = F−1

+

{
e−

√
λ xF+φ

}
,

where we recall that u0 is given by (2.16). In particular, the normal derivatives
∂u±2 /∂x on Σ are readily derived from these expressions. Hence the transmission
condition [∂u2/∂x]Σ = − [∂u1/∂x]Σ will be satisfied if and only if φ is a solution to
the following coupling equation:

(3.7) F−1
−

√
λF−φ+ F−1

+

√
λF+φ =

[
∂u1
∂x

]
Σ

+ 2F−1
−

√
λ β̂0.

Proposition 3.3. On the assumptions of Proposition 3.1, for all incident waves
u0 given by (2.16) where β̂0 ∈ V̂− has a compact support contained in Λ−∩R−, problem
(P2) has a unique solution which depends continuously on f� and u0 in the sense that
it satisfies stability estimates similar to (2.17)–(2.18). This solution is given by (3.6),
where φ ∈ V− ∩ V+ is the unique solution to the coupling equation (3.7).

Proof. Equation (3.7) is introduced and studied in [17]. We recall here briefly the
proof for well-posedness which follows surprisingly from the Lax–Milgram theorem.
Indeed, its variational formulation writes as follows: Find φ ∈ V− ∩ V+ such that

a−(φ, ψ) + a+(φ, ψ) = �(ψ) ∀ψ ∈ V− ∩ V+, where

a±(φ, ψ) :=
∫
Λ±

√
λF±φ(λ)F±ψ(λ) dμ±(λ),

�(ψ) :=

∫
Σ

(
∂u+1
∂x

− ∂u−1
∂x

)
ψ dz + 2

∫
Λ−

√
λ β̂0(λ)F−ψ(λ) dμ−(λ).

Strictly speaking, the integrals on Λ± (respectively, on Σ) should be written as duality

products between V̂ ′± and V̂± (respectively, V ′± and V±). The sesquilinear form a−+a+

is clearly continuous and coercive in V− ∩ V+. Moreover, by virtue of (3.5), we have

|�(ψ)| ≤ C
{
‖f+

� ‖L2(Ω+) ‖ψ‖V+ +
(
‖f−

� ‖L2(Ω−) + ‖β̂0‖̂V−

)
‖ψ‖V−

}
for all ψ ∈ V− ∩ V+, which shows that � is continuous. Hence the solution φ to (3.7)
is uniquely defined, and there exists C′ > 0 such that

(3.8) ‖φ‖V± ≤ C′
(
‖f�‖L2(Ω) + ‖β̂0‖̂V−

)
.

Let us now verify that the functions u±2 defined in (3.6) actually provide a solution
to (P2).We deal here with u+2 , but the same method applies for u−2 with minor changes.
First notice that for all x ∈ R+,

‖u+2 (x, ·)‖V+ = ‖F+u
+
2 (x, ·)‖̂V+

= ‖e−
√
λ x F+φ‖̂V+

≤ ‖F+φ‖̂V+
= ‖φ‖V+ ,

since e−
√
λx ≤ 1. Combined with (3.8), this yields the stability estimate of type (2.17).

Moreover, from (2.15), this shows that u+2 ∈ L2
loc(Ω

+). In order to see that u+2 satisfies
the equations of (P2) in Ω+, rewrite (3.6) more explicitly as

(3.9) u+2 (x, z) =

∫
Λ+

e−
√
λ xF+φ(λ)Φ

+
λ (z) dμ

+(λ) ∀x > 0.
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Thanks to the exponential decay of exp(−√
λ x) as λ → +∞, this expression can be

derived with respect to x and z by permuting the derivative and the integral sign
(by virtue of Lebesgue’s dominated convergence theorem). This shows that u+2 is C1

in (0,+∞)× [0,+∞), and C∞ in both (0,+∞) × [0, h] and (0,+∞) × [h,+∞), and
satisfies

(3.10)

{−Δu+2 − k+(z)2 u+2 = 0 in Ω+,
u+2 = 0 on Γ+.

The problem is to understand in what sense u+2 = φ on Σ since we do not yet know that
u+2 ∈ H1

loc(Ω
+). For a given x > 0, define Ωx := (x,+∞)× R+ and Σx := {x} × R+.

Using (3.10) and Green’s formula, we see that for v ∈ C∞(Ω+) with compact support
and such that v|Σ∪Γ = 0, we have∫

Ωx

u+2 (−Δv − k+(z)2 v) dxdz =

∫
Σx

u+2
∂v

∂x
dz −

∫
Σx

∂u+2
∂x

v dz.

What is the limit of this expression as x → 0+? First, the integral on Ωx simply
converges to the same integral on Ω+ since u+2 ∈ L2

loc(Ω
+). Then we can interpret the

integrals on Σx as duality products between V+ and V ′
+. Notice, on one hand, that

lim
x→0+

‖u+2 (x, ·) − φ‖V+ = lim
x→0+

‖(e−
√
λ x − 1)F+φ‖̂V+

= 0

(by Lebesgue’s dominated convergence theorem) and, on the other hand, that∥∥∥∥∂u+2∂x (x, ·)
∥∥∥∥
V ′
+

=
∥∥∥−√

λ e−
√
λx F+φ

∥∥∥
̂V ′
+

≤
∥∥∥|λ|1/2 F+φ

∥∥∥
̂V ′
+

= ‖F+φ‖̂V+
= ‖φ‖V+ .

Moreover, from (2.15), we know that ‖v(x, ·)‖V+ ≤ C ‖v(x, ·)‖H1/2(R+) → 0 as x →
0+. This shows finally that for v ∈ C∞(Ω+) with compact support and such that
v|Σ∪Γ = 0, ∫

Ω+

u+2 (−Δv − k+(z)2 v) dxdz =

〈
φ ,

∂v

∂x

∣∣∣∣
Σ

〉
V+,V ′

+

,

which means that u+2 is a very weak solution to (3.10) together with the boundary

condition u+2 = φ on Σ. As φ ∈ H
1/2
loc (Σ) (see (2.15)), standard arguments of regularity

for elliptic equations (see, e.g., [16]) show that u+2 belongs to H1
loc(Ω

+) and satisfies
a stability estimate of type (2.18).

And this is the only solution to (3.10) which satisfies u+2 = φ on Σ: using a
symmetry argument, this is readily deduced from the uniqueness property in a uniform
waveguide [1, Proposition 3.1]. Consequently, as the coupling equation (3.7) is well-
posed, the uniqueness of the solution to (P2) follows.

Proposition 3.4. If u2 is a solution to (P2), then
(i) it belongs to L∞(Ω) + L2(Ω); and
(ii) there exists C > 0 such that for all x �= 0 and z ∈ R+,

|u2(x, z)| ≤ C +
C

|x|1/2 ,
∣∣∣∣∂u2∂x

(x, z)

∣∣∣∣ ≤ C +
C

|x|3/2 , and

∣∣∣∣∂u2∂z
(x, z)

∣∣∣∣ ≤ C +
C

|x|3/2 .
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Proof. As above, we consider only the case x > 0 (similar arguments can be used
for x < 0). For (ii), we use the Cauchy–Schwarz inequality in (3.9), which gives

|u+2 (x, z)|2 ≤ J(x, z) ‖φ‖2V+
, where J(x, z) :=

∫
Λ+

|λ|−1/2
∣∣∣e−√

λx Φ+
λ (z)

∣∣∣2 dμ+(λ).

We decompose the latter integral into three parts: these are a discrete part on Λ+
p ,

which is clearly bounded uniformly with respect to x and z, and two continuous
contributions, respectively, on (−k2∞, 0) and (0,+∞). Then, using Lemma A.1, we
have

J(x, z) ≤ C

(
1 +

∫ 0

−k2∞

1√|λ| (λ+ k2∞)
dλ+

∫ +∞

0

e−2
√
λ x

√
λ

dλ

)
.

The first integral is bounded, and the second one is equal to x−1, which yields the
announced estimate for |u2(x, z)|. The same idea applies for ∂u+2 /∂x and ∂u+2 /∂z
(recall that we can permute a derivative and the integral sign if x �= 0). In the
expression of J, the quantity |λ|−1/2 has to be replaced by |λ|1/2 for the former, and
Φ+

λ by ∂Φ+
λ /∂z for the latter. The conclusion again follows from Lemma A.1.

To prove (i), we choose a smooth cutoff function χ̂ : Λ+ 	→ [0, 1] equal to 1 if
λ < λ0 and to 0 for λ > λ1, where 0 < λ0 < λ1. Hence we have u+2 = ua2 + ub2 , where

ua2(x, ·) := F−1
+

(
χ̂ e−

√
λ xF+φ

)
and ub2(x, ·) := F−1

+

(
(1− χ̂) e−

√
λ x F+φ

)
.

We can proceed as above for ua2: the new expression of J is given by an integral on a
bounded part of Λ+, which shows that ua2 ∈ L∞(Ω+). On the other hand,∫

Ω+

|ub2(x, z)|2 dxdz =
∫
Λ+

∫
R+

∣∣∣(1− χ̂(λ)) e−
√
λx F+φ(λ)

∣∣∣2 dxdμ+(λ)

≤
∫ +∞

λ0

|F+φ(λ)|2
∫
R+

e−2
√
λ x dx ρ+λ dλ

≤ C

∫ +∞

λ0

1√
λ

|F+φ(λ)|2 ρ+λ dλ ≤ C‖φ‖2V+
,

which shows that ub2 ∈ L2(Ω+).

4. Uniqueness. As mentioned in the introduction, the originality of the paper
consists in the proof of the following theorem, which is decomposed in three stages
detailed in the three following subsections.

Theorem 4.1. Problem (P ) has at most one solution.
From now on, u denotes a solution to (P ) with homogeneous data, that is, with

f = 0 and u0 = 0. As in section 2.3, it can be interpreted as a solution to (P�)
with a localized excitation f� = (k2 − k2�)u (and no incident wave), which yields the
decomposition u = u1 + u2 introduced in section 3, which will be used hereafter.

4.1. Longitudinal energy fluxes. In order to explain the idea of this first
stage, let us assume for one instant that u ∈ H1(S), where S denotes the strip
(−a,+a) × R+. By multiplying the Helmholtz equation by u, integrating in S, and
using Green’s formula (which is allowed thanks to our simplifying assumption), we
obtain ∫

S

(|∇u|2 − k2 |u|2) dxdz =

∫
Σ−a∪Σ+a

∂u

∂|x| udz,
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where we recall that Σ±a := {±a} × R+. Taking the imaginary part then yields

(4.1) E+(u) + E−(u) = 0, where E±(u) := Im

∫
Σ±a

∂u

∂|x| u dz,

which means that the sum of the longitudinal energy fluxes across Σ±a vanishes.
These quantities can be expressed by means of the modal components α̂± involved in
the modal radiation condition (R±). Indeed, from (2.11)–(2.12), we have

E±(u) = Im

∫
Λ±

∂F±u
∂|x| (±a, λ)F±u(±a, λ) dμ±(λ) =

∫
Λ±∩R−

√
|λ| |α̂±(λ)|2 dμ±(λ),

since
√
λ = −i

√|λ| if λ < 0. Hence, as both quantities E±(u) are nonnegative, we
deduce that α̂±(λ) = 0 for all λ ∈ Λ± ∩ R−. To sum up, if u belonged to H1(S), we
would have proved the following result.

Proposition 4.2. If u is a solution to (P ) with f = 0 and u0 = 0, then the modal
components of u associated with propagative modes vanish, that is, F±u(x, λ) = 0 for
±x ≥ a and λ ∈ Λ± ∩R−.

Proof. In the above lines, our simplifying assumption (u ∈ H1(S)) was used only
to obtain (4.1): the remainder of the proof still applies without this assumption. Thus
we have to prove (4.1) without assuming that u ∈ H1(S). The idea is to use Green’s
formula in the rectangle (−a,+a)× (0, R) instead of the strip S, which yields

(4.2) Im

∫
ΣR

−a∪ΣR
+a

∂u

∂|x| udz + IR = 0, where IR := Im

∫ +a

−a

∂u

∂z
(x,R)u(x,R) dx

and ΣR
±a := {±a} × (0, R). Noticing that u(±a, ·) ∈ V± and (∂u/∂x)(±a, ·) ∈ V ′

±
(because of the radiation conditions (R±)), we have

E±(u) = lim
R→+∞

Im

∫
ΣR

±a

∂u

∂|x| udz < +∞,

where E±(u) is given in (4.1). It remains to verify that limR→+∞ IR = 0. In order to
prove this, we use the decomposition u = u1 + u2, which gives

IR =
∑

i,j=1,2

IRi,j , where IRi,j := Im

∫ +a

−a

∂ui
∂z

(x,R)uj(x,R) dx.

Each of these four integrals vanish as R → +∞. For IR1,1, it is a straightforward

consequence of (3.4). For IR1,2 and IR2,1, we use again (3.4) as well as Proposition

3.4(ii) which show that for large enough R, the integrands (∂ui/∂z)(x,R)uj(x,R) are
bounded, respectively, by C (1 + |x|−1/2)R−1/2 and C (|x| + |x|−1/2)R−3/2. Finally,
for IR2,2, Proposition 3.4 is not sufficient to obtain the expected result. Instead we
reverse the argument we have used for u. Indeed, we know from (3.6) that for x �= 0,

Im

∫
R+

∂u±2
∂|x| (x, z)u

±
2 (x, z) dz =

∫
Λ±∩R−

√
|λ| |F±φ(λ)|2 dμ±(λ),

which depends only on the sign of x. Moreover, using the equations satisfied by u+2
in the rectangle (0, a)× (0, R), we obtain an equation similar to (4.2) for u+2 . Hence

when R tends to +∞, the energy flux Im
∫ a

0 (∂u
+
2 /∂z)(x,R)u

+
2 (x,R) dx must tend to

0. And the same result for u−2 finally shows that IR2,2 → 0.
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4.2. Transverse behavior of the solution. In section 4.3, we will prove that
the other modal components of u, that is, those associated with evanescent modes,
also vanish, using an argument of analyticity. But we need a preliminary result
summarized in the following proposition.

Proposition 4.3. If u is a solution to (P ) with f = 0 and u0 = 0, then both u|Σ
and (∂u/∂x)|Σ belong to L1(R+).

The proof will be decomposed as a sequence of four lemmas. The first lemma
concerns the decay properties of u in the longitudinal direction, which follow from
Proposition 4.2 using the generalized Fourier transform in the transverse direction.
In the next three lemmas, we reverse this point of view, using the Fourier transform
in the longitudinal direction in order to get some information about the behavior of
u in the transverse direction.

Lemma 4.4. For all n ∈ N, there exists a constant Cn > 0 such that∣∣∣∣∂nu∂xn
(x, z)

∣∣∣∣ ≤ Cn

(|x| − a)n+1/2
∀|x| ≥ a, ∀z ∈ R

+.

Proof. The modal radiation conditions (R±) and Proposition 4.2 yield∣∣∣∣∂nu∂xn
(x, z)

∣∣∣∣ = ∣∣∣∣∫
R+

α̂±(λ)λn/2 e−
√
λ(|x|−a)Φ±

λ (z) ρ
±
λ dλ

∣∣∣∣ for ± x ≥ a.

The lemma follows from the same arguments as in the proof of Proposition 3.4(ii) and
the fact that ∫ +∞

0

λn−1/2 e−2
√
λ (|x|−a) dλ =

2 (2n)!

{2(|x| − a)}2n+1
.

Note that no constant term occurs here since α̂±(λ) = 0 for negative λ.
Define now

ũ(ξ, z) :=
1√
2π

∫
R

u(x, z) e−iξx dx ∀ξ ∈ R.

Note that from Propositions 3.2(i) and 3.4(i), we know that u ∈ L2(Ω) + L∞(Ω);
hence u is a tempered distribution. As a consequence, this definition of the Fourier
transform of u must be interpreted in the sense of distributions.

Lemma 4.5. For z ≥ b, we have

(4.3) ξ ũ(ξ, z) =

⎧⎨⎩ A(ξ) e−
√

ξ2−k2∞ (z−b) for |ξ| > k∞,

B(ξ) e+i
√

k2∞−ξ2 (z−b) +D(ξ) e−i
√

k2∞−ξ2 (z−b) for |ξ| < k∞,

where A,B, and D are C∞ functions, except possibly at ξ = 0 (B and D are continuous
at ξ = 0). These functions vanish as well as all their derivatives at ±k∞. Moreover,
as |ξ| → ∞, we have (∂m/∂ξm)A(ξ) = O(|ξ|−n) for all integers n and m.

Proof. By Lemma 4.4 and the fact that u is C∞ above the inhomogeneities,
we have xm(∂nu/∂xn)(·, z) ∈ L1(R) for all integers m < n and all z ≥ b, so
(∂m/∂ξm)(ξn ũ(ξ, z)) is a continuous function of ξ which tends to 0 as |ξ| → ∞
(by the Riemann–Lebesgue theorem). Thus ξ ũ(ξ, z) is C∞ except possibly at ξ = 0.
Formula (4.3) is readily obtained by noticing that ∂u/∂x satisfies the Helmholtz equa-
tion with wavenumber k∞ for z ≥ b. Note that no exponentially increasing component
(as |ξ| → ∞) appears since ũ is a tempered distribution.
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The properties of A, B, and D follow from those of ξ ũ: these are C∞ functions
except possibly at ξ = 0. In particular, for |ξ| > k∞,

∂

∂ξ
(ξ ũ(ξ, z)) = A′(ξ) e−

√
ξ2−k2∞ (z−b) −A(ξ)

ξ (z − b)√
ξ2 − k2∞

e−
√

ξ2−k2∞ (z−b)

must be bounded as ξ → ±k∞; thus A(±k∞) = 0. Looking at higher order derivatives
yields A(n)(±k∞) = 0 for all n ∈ N. Therefore, (∂n/∂ξn)(ξ ũ)(±k∞, z) = 0, and the
same argument for |ξ| < k∞ then shows that B(n)(±k∞) = D(n)(±k∞) = 0 for all
n ∈ N. Finally, note that for all n ∈ N, we have ξnA(ξ) = ξn+1 ũ(ξ, b) → 0 as
|ξ| → +∞; thus A(ξ) = O(|ξ|−n). Similarly, noticing that (∂/∂ξ)(ξn+1 ũ)(ξ, b) → 0 as
|ξ| → +∞ gives the same property for A′(ξ), and so on, for higher derivatives.

Using the inverse Fourier transform, the above lemma leads us to the following
decomposition for all n ≥ 1:

∂nu

∂xn
= u(n)e + u(n)p , where

u(n)e (x, z) :=
1√
2π

∫
|ξ|>k∞

ξn−1A(ξ) e−
√

ξ2−k2∞(z−b) eixξ dξ and

u(n)p (x, z) :=
1√
2π

∫
|ξ|<k∞

ξn−1
(
B(ξ)ei

√
k2∞−ξ2 (z−b) +D(ξ)e−i

√
k2∞−ξ2 (z−b)

)
eixξ dξ,

which represent two continuous superpositions of modes that are, respectively, evanes-
cent and propagative in the transverse direction. Their respective behaviors at large
distance are given in the following two lemmas.

Lemma 4.6. For all integers n, p, and q, there exists C > 0 such that∣∣∣u(n)e (x, z)
∣∣∣ ≤ C |x|−p (z − b)−q ∀x �= 0, ∀z > b.

Proof. By Lemma 4.5, for all n ∈ N, the function fn defined by

fn(ξ, z) := ξn−1A(ξ) e−
√

ξ2−k2∞ (z−b) for |ξ| > k∞

can be continued by 0 for |ξ| < k∞ so that it becomes C∞ on R. It decays faster
than any power of 1/|ξ| as |ξ| → +∞, as well as all of its ξ-derivatives. Hence, by
successive integrations by parts, we obtain

u(n)e (x, z) =
1√
2π

(
i

x

)p ∫
|ξ|>k∞

∂pfn
∂ξp

(ξ, z) eixξ dξ ∀p ∈ N.

Noticing that for all q ∈ N, one can find C > 0 such that |(∂pfn/∂ξp)(ξ, z)| ≤
C (ξ2 − k2∞)q/2 exp(−√

ξ2 − k2∞ (z − b)), we deduce that∣∣∣u(n)e (x, z)
∣∣∣ ≤ C

|x|p
∫
|ξ|>k∞

(ξ2 − k2∞)q/2 e−
√

ξ2−k2∞ (z−b) dξ.

Using the change of variable t =
√
ξ2 − k2∞ and successive integrations by parts, the

conclusion follows.
We deal now with the behavior of u

(n)
p (x, z) in an oblique direction z = τ x.

Lemma 4.7. For τ ∈ (0,+∞) and n ≥ 2, we have the following asymptotic
behaviors as x→ +∞:

u(n)p (x, τx) =
Pτ ξ

n−1
τ B(ξτ ) e

i(1+τ2)ξτx + Pτ (−ξτ )n−1D(−ξτ ) e−i(1+τ2)ξτx

√
x

+O

(
1

x

)
,
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where

ξτ :=
k∞√
1 + τ2

and Pτ :=
√
2π ξ3τ τ k

−1
∞ e−i(τξτb+π/4).

Proof. Using the stationary phase theorem (see, e.g., [18]), let us prove that∫
|ξ|<k∞

ξn−1B(ξ) ei(
√

k2∞−ξ2(τx−b)+ξx) dξ = Pτ ξ
n−1
τ B(ξτ )

ei(1+τ2)ξτx

√
x

+O

(
1

x

)
.

Consider the phase function θ(ξ) := ξ+ τ
√
k2∞ − ξ2 which has only one (nondegener-

ate) stationary point at ξτ = k∞/
√
1 + τ2. Because of the possible singularity of the

amplitude Bn(ξ) := ξn−1B(ξ) exp(−i
√
k2∞ − ξ2b) at ξ = 0, and because of the behav-

ior of θ(ξ) at ξ = ±k∞, we introduce a C∞ function χ(ξ) equal to 1 near ξτ and to 0
near ±k∞ and 0. The stationary phase theorem applied to

∫
χ(ξ)Bn(ξ) exp(iθ(ξ)x) dξ

then yields the dominant term in the above formula. The remaining contribution is
O(x−1). Indeed, we can use a nonstationary phase argument,∫

|ξ|<k∞
(1 − χ(ξ))Bn(ξ) e

iθ(ξ)x dξ =
−1

x

∫
|ξ|<k∞

d

dξ

(
(1− χ(ξ))Bn(ξ)

i θ′(ξ)

)
eiθ(ξ)x dξ,

where (1 − χ)Bn/(i θ
′) ∈ C1([−k∞, k∞]) thanks to the assumption n ≥ 2. The same

procedure applies for the integral which involves D(ξ).
We can now conclude the proof of Proposition 4.3. Choose n ≥ 2. Lemma 4.4

tells us that (∂nu/∂xn)(x, τx) = O(x−n−1/2) as x → +∞. By Lemmas 4.6 and 4.7,

we infer that the dominant contribution of u
(n)
p (which is O(x−1/2)) must vanish. So,

for large enough x, we have

Pτ ξ
n−1
τ B(ξτ ) e

i(1+τ2)ξτx + Pτ (−ξτ )n−1D(−ξτ ) e−i(1+τ2)ξτx = 0.

As this holds for all τ > 0, we deduce that B(ξ) = D(−ξ) = 0 for all ξ ∈ (0, k∞).
Now, by choosing τ ∈ (−∞, 0) and x → −∞, we would obtain similarly B(ξ) =
D(−ξ) = 0 for all ξ ∈ (−k∞, 0). Hence B = D = 0, which means that the components
of ∂nu/∂xn associated with propagative transverse modes vanish. Going back to

Lemma 4.5, we deduce that for z ≥ b, ũ(ξ, z) = κ(z) δ0 + ξ−1A(ξ) e−
√

ξ2−k2∞ (z−b),
where δ0 is a Dirac measure at ξ = 0, κ(z) is a function which depends only on
z, and A(ξ) is understood as a C∞ function which vanishes in [−k∞, k∞]. Therefore,

u(x, z) = κ(z)/
√
2π+u

(0)
e (x, z), where Lemma 4.4 imposes that κ(z) = 0. Proposition

4.3 finally follows from Lemma 4.6.

4.3. Spectral analyticity and proof of uniqueness. The third and last stage
for the proof of Theorem 4.1 consists in the following proposition.

Proposition 4.8. If u is a solution to (P ) with f = 0 and u0 = 0, then for all
x such that ±x ≥ a, the function Λc � λ → F±u(x, λ) extends continuously to an
analytic function in the quadrant Q := {λ ∈ C; Re(λ) > −k2∞ and Im(λ) < 0}.

Proof. We use again the decomposition u = u1+u2. On one hand, Proposition 3.2
tells us that for all x ∈ R±, functions F±u±1 (x, λ) and (∂/∂x)F±u±1 (x, λ) extend to
analytic functions of λ in C \ iR+, which clearly contains Q. On the other hand, by

(3.6), we have F±u±2 = e−
√
λ |x|F±φ, where φ is the solution to the coupling equation

(3.7). Thus it is enough to prove the expected analyticity property for F±φ, which
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essentially follows from Lemma 4.9 below. We deal here with φ̂+ := F+φ (but, of
course, the same procedure applies for F−φ). First rewrite (3.7) as

(4.4)
√
λ φ̂+ + F+F−1

−
√
λF−F−1

+ φ̂+ = F+

[
∂u1
∂x

]
Σ

.

By definition (4.5), we have

F+F−1
−

√
λF−F−1

+ =
√
λ I−

√
λ F̃F−1

+ + F̃F−1
−

√
λF−F−1

+ .

Noticing that F−1
+ φ̂+ = φ = u|Σ and F−1

−
√
λF−F−1

+ φ̂+ = (∂u−2 /∂x)|Σ then yields

F+F−1
−

√
λF−F−1

+ φ̂+ =
√
λ φ̂+ −

√
λ F̃u

∣∣∣∣Σ + F̃ ∂u−2
∂x

∣∣∣∣
Σ

.

Moreover, using again (4.5), the right-hand side of (4.4) reads as

F+

[
∂u1
∂x

]
Σ

= F+
∂u+1
∂x

∣∣∣∣
Σ

− σλ F−
∂u−1
∂x

∣∣∣∣
Σ

− F̃ ∂u−1
∂x

∣∣∣∣
Σ

.

To sum up, as ∂u/∂x = ∂u−1 /∂x+ ∂u−2 /∂x on Σ, we see that (4.4) implies

2
√
λ φ̂+ =

√
λ F̃u|Σ − F̃ ∂u

∂x

∣∣∣∣
Σ

+ F+
∂u+1
∂x

∣∣∣∣
Σ

− σλ F−
∂u−1
∂x

∣∣∣∣
Σ

.

By Proposition 4.3 and Lemma 4.9, the two first terms of the right-hand side extend
continuously as analytic functions in Q. As mentioned at the beginning of the proof,
the same holds for the two others (function σλ is also analytic by Lemma A.2) and
thus also for the left-hand side, which completes the proof.

Lemma 4.9. For all ϕ ∈ L1(R+), the function defined by

(4.5) F̃ϕ(λ) := F+ϕ(λ) − σλ F−ϕ(λ) ∀λ ∈ Λc

(where σλ is given in (A.4)) extends continuously to an analytic function in Q.
Proof. Formula (4.5) can be written equivalently as

F̃ϕ(λ) :=
∫
R+

ϕ(z) Φ̃λ(z) dz ∀λ ∈ Λc,

where Φ̃λ(z) is defined as in (A.4). Lemma A.2 tells us that for all z ∈ R+, this
function extends continuously to an analytic function in Q, and this extension is
exponentially decreasing when z tends to +∞. As ϕ ∈ L1(R+), the conclusion simply
follows from Lebesgue’s dominated convergence theorem.

We are now able to prove the uniqueness result of Theorem 4.1. First, we know
from Proposition 4.2 that if u is a solution to (P ) with f = 0 and u0 = 0, then for x ≥
a, we have F+u(x, λ) = 0 for all λ ∈ Λ+ ∩R−. Moreover, Proposition 4.8 tells us that
F+u(x, λ) extends continuously to an analytic function in Q. Thus, by the Schwarz
reflection principle [8], as F+u(x, λ) is real (because it is equal to 0) on Λc ∩ R−, we
deduce that F+u(x, λ) has an analytic continuation in {λ ∈ C; Re(ζ) > −k2∞} \ R+.
Therefore, F+u(x, λ) vanishes in this domain and so also on R+ (since it is continuous
on Q ∪R+).
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To conclude, we have proved that for all x ≥ a and z ∈ R+, we have u(x, z) = 0.
By the unique continuation principle (see, for example, [14]), we finally deduce that
u = 0.

Remark 4.10. As mentioned in the introduction, this result shows that open and
closed waveguides lead to very different phenomena. Indeed, trapped modes (corre-
sponding to nonuniqueness cases) are known to occur in closed waveguides [15]. It is
therefore worth noticing that the above proof of uniqueness cannot apply for a junc-
tion of closed waveguides. Indeed, in this case, the transverse operators A± have pure
point spectra, since they are defined in bounded cross-sections. Of course, Proposi-
tion 4.2 holds thanks to a similar energy argument: with no excitation, the modal
components of u associated with propagative modes (that is, with negative values of
λ ∈ Λ±) vanish. But since Λ± ∩ R− is a finite set, we cannot use our analyticity
argument to deduce that the other components also vanish. We see here that the
presence of a continuous spectrum actually plays a crucial role in our approach.

5. Conclusion. To our knowledge, this paper presents the first existence and
uniqueness result for the solution to the time-harmonic acoustic wave equation for the
junction of two uniform open waveguides. Here we criticize ourselves and discuss the
possible generalizations of our proof, or the obstacles to such generalizations.

Let us first recall that our results also apply when guided modes do not exist, that
is, when Λ±

p = ∅, which occurs if (k20 − k2∞) max(h−, h+)2 < π2/4 (see the appendix).
In this situation, our results intersect other results available in the literature in the
context of rough media. In particular, using a radiation condition in the transverse
direction, the problem is shown to be well-posed in [5, Theorem 7.5] for suitable
variations of k in the transverse direction (for instance, in the situation of Figure 1.2,
when k0 < k∞) and in [4, Theorem 4] for small enough frequencies (for instance, again
in the situation of Figure 1.2, when max(k0, k∞) max(h−, h+) <

√
2). A natural

and interesting question is whether the solution which is proved to exist in these
papers coincides with ours. We conjecture that these are the same solutions, but
unfortunately we did not succeed in proving this, more precisely in verifying that our
solution satisfies their radiation condition.

Furthermore, we must admit that our choice of a functional framework (Defini-
tion 2.2) is not entirely satisfactory. On one hand, the space H contains a condition
on the transverse behavior of the solution of our scattering problem: u(x, ·) ∈ V± for
±x ≥ 0. In the case of a local perturbation of a uniform waveguide [1], the function
space is simply H1

loc(Ω), and such a transverse behavior is deduced from the equations
and the fact that the modal components α̂± involved in the radiation conditions are
functions. For the junction, we did not succeed in doing the same because of the
use of two different generalized Fourier transforms. On the other hand, our space H
involves a fictitious section Σ = {0}×R+ which has no physical significance. It simply
represents the junction line of the abrupt junction which is needed in our perturbation
approach. Of course, if we move this line, the solution must remain the same. But for
a rigorous proof of this apparently obvious fact, we have to compare both spaces V+
and V−.We conjecture that these spaces coincide, which would show that the solution
does not depend on Σ. A similar result was proved in a simpler context [3] using the
usual Fourier transform. But in our case, the question is open.

What about the possible generalizations of our method? We have considered
here a very simple two-dimensional problem, where both semiwaveguides on both
sides of the junction are made with the same homogeneous media characterized by
the wavenumber k0 in the cores (z < h±) and k∞ in the claddings (z > h±). First,
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if we assume that the wavenumber has distinct values k+0 �= k−0 in both cores but
remains the same in the claddings, all the results and proofs hold. The situation is
quite different if the wavenumber has distinct values k+∞ �= k−∞ in both claddings. In
this case, the only part which has to be adapted is the study of the decay properties of
the solution (section 4.2) for the proof of uniqueness. Indeed, this part is based on the
usual Fourier transform of the solution in the longitudinal direction: its use is justified
by the fact that the medium is homogeneous for z > max{h−, h+}. If k+∞ �= k−∞, it
is likely that the same results can be obtained using instead the generalized Fourier
transform associated with operator −d2/dx2 − k2∞(x), where k∞(x) = k±∞ if x ∈ R±.
We conjecture that in this case, V+ ∩ V− = H1/2(Σ), which would signify that the
solution decays faster in the transverse direction than in a homogeneous cladding,
as this is already known for a two-layered medium [9]. Because of this decay, our
approach is probably not optimal in this situation.

For more complex acoustic waveguides (stratified, three-dimensional, etc.), the
stumbling block of our method lies in a technical but essential result which was
only briefly mentioned in the present paper—the possibility to apply the general-
ized Fourier transform to the solution in any transverse section. Such a generalized
Fourier transform can be defined in numerous situations, but it is initially restricted
to L2 functions, which is not sufficient for our purposes. We have to actually extend
this transform to a larger space which contains slowly decaying functions. For the
particular case dealt with here, this was achieved by introducing a new distribution
space similar to the usual Schwartz space of tempered distributions [11]. But as far
as we know, no result of this kind is available for a more complex situation! Apart
from this technical point, it seems that our method could be applied in a very general
context.

On the other hand, we cannot say the same for electromagnetic waveguides in
which wave propagation is described by Maxwell’s equations. Indeed, the method we
have used to study the coupling equation (section 3.2) cannot be extended to these
vector equations. The same difficulty has been encountered for rough media. An
original idea was recently proposed in [10], but it is too early to know if a similar idea
could apply in the context of a junction of electromagnetic waveguides.

Appendix. We collect here some basic properties of the generalized eigenfunc-
tions associated with operators A± defined in (2.5). For λ ∈ C, define

c±λ (z) := cos
(√

λ+ k±(z)2 (z − h±)
)

and s±λ (z) :=
sin

(√
λ+ k±(z)2 (z − h±)

)
√
λ+ k±(z)2

,

which is a basis of solutions to (2.3). Note that these definitions do not actually
depend on the choice of a determination of the complex square root since they are
even functions of

√
λ+ k±(z)2. Therefore, for all z ∈ R+, both c±λ (z) and s

±
λ (z) are

entire functions of λ. Consider then

Φ±
λ (z) := c±λ (0) s

±
λ (z)− s±λ (0) c

±
λ (z),

which is an entire family of solutions to (2.3)–(2.4). It is easily seen that Φ±
λ (z)

is exponentially increasing as z → +∞ except in two situations. On one hand, if
k20 − k2∞ > π2/(2h±)2, then Φ±

λ (z) becomes exponentially decreasing for the values of
λ ∈ (−k20 + π2/(2h±)2,−k2∞) which satisfy

(A.1) tan
(
(λ+ k20)

1/2 h±
)
= −

(
λ+ k20

−λ− k2∞

)1/2

.
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This dispersion equation has a finite (nonzero) number of roots which constitute the
point spectrum Λ±

p of A±, and the Φ±
λ (z)’s are associated eigenfunctions. Note that

Λ±
p = ∅ if k20 − k2∞ ≤ π2/(2h±)2. On the other hand, if λ ∈ (−k2∞,+∞), then Φ±

λ (z)
is a bounded oscillating function. The set Λ±

c = Λc := [−k2∞,+∞) is the continuous
spectrum of A±.

As mentioned in section 2.1, the generalized Fourier transform is the operator of
“decomposition” on the family {Φ±

λ ;λ ∈ Λ± := Λ±
p ∪ Λc} (see (2.6)). It is unitary

from L2(R+) to L2(Λ±; dμ±), where dμ± :=
∑

λ∈Λ±
p
ρ±λ δλ + ρ±λ dλ|Λc , and

(A.2) ρ±λ :=
1

‖Φ±
λ ‖2R+

if λ ∈ Λ±
p and ρ±λ :=

βλ

π
(
c±λ (0)2 + β2

λ s
±
λ (0)

2
) if λ ∈ Λc,

where βλ := (λ+ k2∞)1/2.
In order to prove the two lemmas below, we define, for λ ∈ Λc,

Θ±
λ (z) :=

(
c±λ (z)− iβλ s

±
λ (z)

)
e−iβλh

±
and Ψ±

λ (z) :=
(
c±λ (z) + iβλ s

±
λ (z)

)
eiβλh

±
,

and we notice that

(A.3) Φ±
λ (z) =

1

2iβλ

[
Θ±

λ (0)Ψ
±
λ (z)−Ψ±

λ (0)Θ
±
λ (z)

] ∀λ ∈ Λc.

Lemma A.1. For all λ ∈ Λc and z ∈ R+, we have

∣∣Φ±
λ (z)

∣∣2 ρ±λ ≤ 1

πβλ
and

∣∣∣∣∂Φ±
λ

∂z
(z)

∣∣∣∣2 ρ±λ ≤ λ+ k±(z)2

πβλ
.

Proof. For λ ∈ Λc, (A.2) can be written as ρ±λ := π−1βλ|Θ±
λ (0)|−2. Moreover,

noticing that |Θ±
λ (z)| = |Ψ±

λ (z)| ≤ 1, we deduce from (A.3) that

∣∣Φ±
λ (z)

∣∣2 ρ±λ ≤
(|Ψ±

λ (z)|+ |Θ±
λ (z)|

)2
4πβλ

≤ 1

πβλ
.

Similarly, we have∣∣∣∣∂Φ±
λ

∂z
(z)

∣∣∣∣2 ρ±λ ≤
(∣∣(∂Ψ±

λ /∂z)(z)
∣∣+ ∣∣(∂Θ±

λ /∂z)(z)
∣∣)2

4πβλ
≤ λ+ k±(z)2

πβλ
,

since |(∂Θ±
λ /∂z)(z)| = |(∂Ψ±

λ /∂z)(z)| ≤
√
λ+ k±(z)2.

The following lemma expresses a perturbation relation between Φ+
λ and Φ−

λ .
Lemma A.2. For λ ∈ Λc and z ∈ R+, define

(A.4) σλ :=
Θ+

λ (0)

Θ−
λ (0)

and Φ̃λ(z) := Φ+
λ (z)− σλ Φ

−
λ (z).

Then both σλ and Φ̃λ(z) extend continuously to analytic functions in the quadrant

Q := {λ ∈ C,Re(λ) > −k2∞, Im(λ) < 0}, and for all λ ∈ Q, function Φ̃λ(z) is
exponentially decreasing as z → +∞.

Proof. It is clear that βλ := (k2∞ + λ)1/2 extends continuously to an analytic
function in C \ (−k2∞ + iR+). Therefore, the same holds for Θ±

λ (0), since c
±
λ (0) and

s±λ (0) are entire functions of λ. Moreover, the zeros of Θ±
λ (0), if any, are necessarily
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smaller than −k2∞. Indeed, these are precisely the eigenvalues of A±, that is, the roots
of the dispersion equation (A.1), except if λ = −k2∞ is a zero of Θ±

λ (0), but this case

is excluded by assumption (2.10). As a consequence, σλ and Φ̃λ(z) are analytic in Q.
From (A.3), we have

Φ̃λ :=
Θ+

λ (0)

2iβλ

(
Ψ+

λ −Ψ−
λ +

Ψ−
λ (0)

Θ−
λ (0)

Θ−
λ − Ψ+

λ (0)

Θ+
λ (0)

Θ+
λ

)
.

If z ≥ max(h−, h+), this expression simplifies as

Φ̃λ(z) =
Θ+

λ (0)

2iβλ

(
Ψ−

λ (0)

Θ−
λ (0)

− Ψ+
λ (0)

Θ+
λ (0)

)
e−iβλz,

since Θ±
λ (z) = exp(−iβλz) and Ψ±

λ (z) = exp(+iβλz) if z ≥ max(h−, h+). When

λ ∈ Q, this shows that Φ̃λ(z) is exponentially decreasing as z → +∞ (for Imβλ < 0).

In other words, Φ̃λ can be interpreted as an incoming wave.
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