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Abstract. We consider the identi�cation of cracks in an acoustic 2D/3D waveguide with
the help of sampling methods such as the Linear Sampling Method or the Factorization
Method. A modal version of these sampling methods is used. Our paper emphasizes the
fact that if one a priori knows the type of boundary condition which actually applies on
the crack, then we shall adapt the formulation of our sampling method to such boundary
condition in order to improve the e�ciency of the method. The need for such adaptation is
proved theoretically and illustrated numerically with the help of 2D examples. We also show
by using our modal formulation that the Factorization Metho d is applicable in a waveguide
with the same data as the Linear sampling Method.

1. Introduction

Inverse scattering consists in identifying some obstacle within a reference domain by
measuring the scattered waves which result from the interaction between several known
incident waves and this obstacle. The so-called \qualitative" or \sampling" methods
introduced in [13] and [16] have considerably improved inverse scattering in acoustics,
electromagnetism and elasticity, in particular in the frequency domain. These techniques
have reached a high level of performance and generality, as can be seen in the recent
monographs [11] and [17] that are devoted to the Linear Sampling Method and the
Factorization Method, respectively. There are two specialcases which introduce some
additional complexity in the application of the sampling methods. The �rst one concerns
the obstacles with empty interior, that is cracks. In such case, the justi�cation of the
sampling method is a bit more di�cult than with impenetrable obstacles with non empty
interior [18, 11], particularly when the crack is characterized by an impedance condition
[3]. The second concerns domains which are bounded in one or two directions of space,
that is waveguides. In such case, the identi�cation of obstacles with qualitative methods
is more challenging than in free space, because the scattered �eld contains an evanescent
part that decays exponentially at long distance [10]. The case of an acoustic waveguide
which is bounded in two directions is addressed in [23, 12, 10], while the case of an acoustic



waveguide which is bounded in one direction is treated in [7,1]. The case of an elastic
waveguide which is bounded in two directions is analyzed in [8]. Another issue arising in the
case of waveguides is the fact that strictly speaking the Factorization Method is applicable
only by using incident waves that are \unphysical" since they are de�ned as the complex
conjugate of a point source. Such point is raised in [17] (seeparagraph 1.7) and discussed
in detail in [1].
Our paper concerns the identi�cation of cracks in acoustic waveguides, that is we address
the two di�culties above at the same time. More precisely, weconsider a modal formulation
of sampling methods, which is speci�c to the waveguide geometry, that is the incident waves
do not consist of point sources like in a classical near �eld formulation but consist of guided
modes. Such modal formulation was �rst introduced in [10, 9]for the Linear Sampling
Method in acoustics and extended to elasticity in [8]. The main advantage of the modal
formulation is that it enables us to properly de�ne a far �eld formulation, in other words
a formulation which is based on measurements at long distance from the defects, which
is important for non destructive testing applications. Ourcontribution in acoustics can
be considered as a �rst step to address the more realistic andinteresting problem of the
crack detection in elastic waveguides. Indeed, the industrial applications in ultrasonic non
destructive testing concern elastic structures, and most often the expected defect is a crack.
A typical example of application, in rail transport, is the NDT of rails. In nuclear power
plants, there are also a lot of metallic pipes that have to be inspected regularly. Note that the
extension of the modal formulation from acoustics to elasticity requires the introduction of
some special vector variables that mix the components of displacement and the components
of the column of the stress tensor which is associated with the direction of propagation [2].
Since such developments in elasticity are quite technical,the identi�cation of cracks in an
elastic waveguide with the help of a modal formulation of theLinear Sampling Method will
be explained in a future contribution.
The main objective of the present paper is to emphasize the fact that whenever the boundary
condition on the crack isa priori known then the test function used in the formulation of
the sampling method has to be properly chosen in order to optimize the quality of the
reconstruction. This choice is illustrated for cracks thatare known to bea priori of Dirichlet
or Neumann type. In elasticity such choice would be crucial for applications. If for instance
we consider non destructive testing for metallic materials, the defects that one tries to identify
are traction free cracks. Hence in this particular case the boundary condition on the crack
is known and sucha priori information has to be taken into account to obtain good results
for imaging.
A secondary objective of the present paper is to show that within the formalism of the modal
formulation, we can apply the Factorization Method for a waveguide which is bounded in
two directions by using the same data as for the Linear Sampling Method. This is in contrast
with [12, 1] since in these two papers some \unphysical" incident waves were used in the
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Factorization Method.
Our paper is organized as follows. In section 2 we introduce the forward and inverse problems.
The Linear Sampling Method and the Factorization Method arethen introduced in section
3, in particular in the modal form. We complete this section by some numerical experiments.

2. The forward and inverse problems

We consider a waveguide of domainW = S � R in Rd with d = 2 or d = 3. In 2D, we
assume thatS = ( � h; h), whereh > 0, while in 3D, S is a bounded and open domain ofR2,
the boundary of which is smooth and denoted �. In the following, x = ( xS; x3) will denote
a generic point ofW, wherexS 2 S and x3 2 R.
Let us denote (� n ; k2

n ), n 2 N� , the eigenfunctions and eigenvalues of the Neumann eigenvalue
problem for the negative Laplacian inS. The sequencek2

n 2 R+ for n 2 N� is increasing,
with k1 = 0 and kn ! + 1 whenn ! + 1 , and we can choose the� n such that they form an
orthonormal basis ofL2(S). It is straightforward to prove that the solutions of the problem

(
(� + k2)u = 0 in W

@� u = 0 on � ;
(1)

where� is the outward unit normal on �, are the linear combinations of the so-called guided
modes, which are the functions de�ned forn 2 N� by

g�
n (xS; x3) = � n (xS)e� i� n x3 ; (2)

where� n is de�ned by

� n =
p

k2 � k2
n ; Re� n ; Im � n � 0: (3)

In the following, we assume that

Assumption 2.1. k is such that� n 6= 0 for all n > 0.

Thank's to such assumption, the guided modes are divided into np propagating modes, for
which Re� n > 0, and an in�nite number of evanescent modes, for which Im� n > 0. More-
over, the guided modesg+

n (respectivelyg�
n ) are either oscillating or decaying exponentially

from the left to the right of the waveguide (respectively from the right to the left).

We are now in a position to introduce the forward problem for both the Dirichlet and
Neumann crack problems. Following [11], let us denote by a portion of a smooth nonin-
tersecting curve (d = 2) or surface (d = 3) that encloses a domainD in W, such that its
boundary @ is smooth too (d = 3), with  2 W. We assume that is an open set with
respect to the induced topology on@D. Such a manifold will be called a crack in the
following. The normal vector� on  is de�ned as the outward normal vector toD.
We denote by H

1
2 ( ) the set of all restrictions to  of functions in H

1
2 (@D), ~H

1
2 ( ) the
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subspace ofH
1
2 ( ) which consists of functions on such that their extension by 0 on@D

belong toH
1
2 (@D). We denote byH � 1

2 ( ) and ~H � 1
2 ( ) the dual spaces of~H

1
2 ( ) and H

1
2 ( ),

respectively (see for example [11]). Note that the spaceH � 1
2 ( ) can be identi�ed as the set

of all restrictions to  of distributions in H � 1
2 (@D), while ~H � 1

2 ( ) can be identi�ed as the
set of all distributions of H � 1

2 (@D) the support of which is contained in .
Denoting now Ss = S � f sg any transverse section, we assume that lies between sections
S� R and SR , with R > 0. Then WR and � R denote the portions ofW and � which are
limited by S� R and SR . The sequence of eigenfunctions (� n )n and eigenvalues (k2

n )n enables
us to de�ne a Dirichlet to Neumann linear and continuous operator T� acting on transverse
sectionsS� R , namely T� : H

1
2 (S� R) �! ~H � 1

2 (S� R), with for h 2 H
1
2 (S� R)

T� h =
X

n> 0

i� n (h; � n )S� R � n ;

where (�; �)Ss is the standard scalar product inL2(Ss). For k > 0, f 2 H
1
2 ( ) and g 2 H � 1

2 ( ),
the forward Dirichlet/Neumann problem we consider inWR n  is

8
>>><

>>>:

(� + k2)u = 0 in WR n 
@� u = 0 on � R

u� = f or @� u� = g on 
@� u = T� u on S� R ;

(4)

whereu� and @� u� denote the trace of functionu and the trace of its normal derivative on
both side of the crack, where the sign� is speci�ed by the orientation of the normal� on
 . The solution of problem (4) is the scattered �eldus associated with the incident �eldui

with f = � ui j  or g = � @� ui j  . The last condition of system (4) is the radiation condition.
We have the following theorem.

Theorem 2.2. For f 2 H
1
2 ( ) and g 2 H � 1

2 ( ), the Dirichlet crack problem and the
Neumann crack problem de�ned by (4) are well-posed inH 1(WR n  ), except for at most
a countable set ofk.

Proof. The proof is classical (see for example [6, 4]), so that we just give a sketch of it, in
the case of the Neumann crack problem. The treatment of the Dirichlet case is very similar.
It is easy to prove that an equivalent weak formulation to problem (4) is:

Find u 2 V := H 1(WR n  ) such that a(u; v) = l(v); 8v 2 V; (5)
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where the continuous sesquilinear and antilinear formsa and l are de�ned by

a(u; v) :=
Z

WR n
(r u � r v � k2u v) dx �

Z

SR

T+ u v ds�
Z

S� R

T� u v ds;

l(v) := �
Z


g(v+ � v� ) ds;

where the integrals onS� R have the meaning of duality pairing between~H � 1
2 (S� R) and

H
1
2 (S� R), and the integral on  has the meaning of duality pairing betweenH � 1

2 ( ) and
~H

1
2 ( ).

The sesquilinear forma may be written a = b+ c, with

b(u; v) :=
Z

WR n
(r u � r v + u v) dx �

X

n> 0

i� n (u; � n )S� R (v; � n )S� R ;

c(u; v) := � (1 + k2)
Z

WR n
u v dx:

The weak formulation (5) is of Fredholm type. Actually, by theRiesz theorem the formb
de�nes a isomorphism onV since Reb(u; u) � jj ujj2

H 1 (V ) , while the form c de�nes a compact
operator onV since the mappingH 1(WR n  ) ! L2(WR n  ) is compact. We conclude that
uniqueness implies existence for the problem (4), or equivalently, for problem (5).
Hence, let us assume thatu 2 V satis�es the weak formulation (5) with g = 0 and let us
choosev = u. Taking the imaginary part of the obtained equation impliesthat ( u; � n ) = 0
for n = 1; : : : ; np. We hence obtain

aH (k; u; v) = �
Z

WR n
u v dx; 8v 2 V; (6)

where� = k2 and the hermitian sesquilinear formaH is de�ned by

aH (k; u; v) :=
Z

WR n
r u � r v dx +

X

n>n p

p
k2

n � k2 (u; � n )S� R (v; � n )S� R :

By using again the compactness of the mappingH 1(WR n ) ! L2(WR n ), well known results
for that kind of variational eigenvalue problems (see for example the chapter 6 of [21]) imply
that the eigenvalues� satisfying (6) for u 6= 0 form a non-negative, increasing sequence
(� m )m> 0 which tends to +1 . Moreover such eigenvalues have the following min� max
characterization for all m > 0 (see for example [22]):

� m (k) = min
Vm �V m

max
v2 Vm ; v6=0

aH (k; v; v)R
WR n jvj2 dx

;

whereVm denotes the set of allm-dimensional subspaces ofV. For any integer m > 0, the
function k 7! � m (k)=k is non-increasing from the min� max characterization, and continuous
by the same arguments as in [6].
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Hence the �xed-point equation� m (k) = k2 , � m (k)=k = k has exactly one solutionkm for
eachm. As a conclusion, uniqueness holds except for a set of values of k among thekm .

Remark 2.3. Note that some examples of non uniqueness exist, the non vanishing solutions
of problem (4) for f = 0 or g = 0 being called trapped modes. For instance, such trapped
modes are obtained for the Neumann case and horizontal crackin [5].

Hence we introduce the following assumption, which is supposed to hold throughout this
paper.

Assumption 2.4. k is such that problem (4) is well-posed.

We are now in a position to formulate the inverse problem we are interested in, with
Ŝ := S� R [ SR .

The inverse problem (IP). Given the measurements on̂S of the scattered �eldsu�
n

associated with the incident �eldsg�
n for all n > 0, reconstruct the crack .

One should note that in the inverse problem above, the incident waves do not consist of point
sources as usual, they consist of guided modes. However, as shown in [10], the knowledge
of the scattered �elds associated with all point sources located on Ŝ is equivalent to the
knowledge of the scattered �elds associated with all guidedmodes. But the choice of guided
modes as incident waves has the following advantage: in practice only the propagating
modesg�

n , which correspond ton = 1; � � � ; np, shall be used since the evanescent ones, which
correspond ton > n p, vanish exponentially at long distance. This will hereafter enable us
to establish a far �eld formulation of sampling methods.

3. The sampling methods

3.1. Some preliminary results

In order to tackle the inverse problem above, we �rst consider some more classical incident
�elds ui = G(�; y) or ui = G(�; y) for somey 2 Ŝ, whereG(�; y) denotes the Green function
of the waveguideW, which solves

8
><

>:

� (� + k2)G(�; y) = � y in WR

@� G(�; y) = 0 on � R

@� G(�; y) = T� G(�; y) on S� R ;

and is de�ned for all x; y 2 W, by

G(x; y) = �
X

n> 0

ei� n jx3 � y3 j

2i� n
� n (xS)� n (yS): (7)

In the following, we detail the justi�cation of sampling methods only in the case of the
Neumann crack problem, the case of the Dirichlet crack problem would be treated similarly.

6



It should be noticed that, strictly speaking, the Neumann crack problem is neither addressed
in [11] nor in [3]. Let us now introduce some integral operators. We �rst de�ne the
hypersingular operatorT : H

1
2 (@D) ! H � 1

2 (@D) by

T � (x) :=
@
@�

Z

@D
� (y)

@G(x; y)
@�(y)

ds(y); x 2 @D;

as well as its restrictions to , namely T : ~H
1
2 ( ) ! H � 1

2 ( ), with

T � (x) :=
@
@�

Z


� (y)

@G(x; y)
@�(y)

ds(y); x 2 : (8)

We also de�ne the auxiliary operatorGN : H � 1
2 ( ) ! L2(Ŝ) which mapsg 2 H � 1

2 ( ) into
the trace onŜ of the solution of the Neumann crack problem (4) with datag, as well as the
integral operatorsFN : ~H

1
2 ( ) ! L2(Ŝ) and H N : L2(Ŝ) ! H � 1

2 ( ) such that

(FN � )(x) :=
Z


� (y)

@G(x; y)
@�(y)

ds(y); x 2 Ŝ;

(H N h)(x) :=
Z

Ŝ
h(y)

@G(x; y)
@�(x)

ds(y); x 2 :

In order to prove some properties of the above operators, we need a unique continuation
lemma, which is proved in [10].

Lemma 3.1. For all s > R and h 2 H
1
2 (SR), the following problem without the crack

8
>>><

>>>:

(� + k2)u = 0 in S � (R; s)
@� u = 0 on � � (R; s)
u = h on SR

@� u = T+ u on Ss

has a unique solution inH 1(S � (R; s)), which is given by

u(xS; x3) =
X

n> 0

(h; � n )SR ei� n (x3 � R) � n (xS):

We are now in a position to prove some useful properties of operators T , FN , H N and GN .
In this view we recall the following de�nitions: for some operator F ,

ReF =
F + F �

2
; ImF =

F � F �

2i
;

whereF � denotes the adjoint ofF , and for a selfadjoint operatorF ,

if F =
Z + 1

�1
� dE � ; jF j :=

Z + 1

�1
j� j dE� ;

whereE � is the spectral family associated with the operatorF .

Lemma 3.2. The following assertions hold true under assumptions 2.1 and 2.4.

(i) The operator T is an isomorphism.
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(ii) The operator ImT is non negative on ~H
1
2 ( ), that is

h(ImT )�; � i
H � 1

2 ( ); ~H
1
2 ( )

� 0; 8� 2 ~H
1
2 ( ):

(iii) The operators FN and H N satisfy FN = H �
N .

(iv) The operators FN , GN and T satisfy FN = GN T .

(v) The operator GN is compact, injective with dense range.

Proof. Let us consider the �rst assertion. The proof follows that oflemma 8.33 in [11]. We
consider the operatorT1 (resp. T; 1 ) the analogue of operatorT (resp. T ) with the kernel
G replaced by �, where � is the radiating Green's function of the Helmholtz equation in free
spaceRd. The analogues of operatorsT1 and T; 1 in the special casek = i are denotedT1 ;i

and T; 1 ;i . For any � 2 ~H
1
2 ( ), let us denote ~� its extension by 0 inH

1
2 (@D). We hence

have

h� T; 1 ;i �; � i
H � 1

2 ( ); ~H
1
2 ( )

=
D

� T1 ;i
~�; ~�

E

H � 1
2 (@D);H

1
2 (@D)

:

By theorem 1.26 in [17],� T1 ;i is a selfadjoint and coercive operator, so we have for some
constant c > 0

h� T; 1 ;i �; � i
H � 1

2 ( ); ~H
1
2 ( )

� cjj ~� jj2

H
1
2 (@D)

= cjj � jj2
~H

1
2 ( )

;

which proves thatT; 1 ;i is an isomorphism. The operator (T � T; 1 ;i ) has a smooth kernel
and therefore is compact. By using the decompositionT = T ; 1 ;i + ( T � T; 1 ;i ), it is hence
su�cient to prove that T is injective.
Let us assume that for� 2 ~H

1
2 ( ) we have T � = T ~� = 0. We de�ne the double layer

potential

(D ~� )(x) :=
Z

@D

~� (y)
@G(x; y)

@�(y)
ds(y); x 2 W n @D:

and the analogue operatorD1 when the kernelG is replaced by �. Since the kernel of
(D � D 1 ) is smooth, the function ((D � D 1 ) ~� ) and its normal derivative are continuous
across@D, which from classical jump relationship for double layer potential D1 (see for
example [11]) implies

~� = ( D1
~� )+ � (D1

~� )� = ( D ~� )+ � (D ~� )� ;

T ~� = @� (D ~� )+ = @� (D ~� )� :

Since T ~� = 0, the function (D ~� ) solves the Neumann crack problem (4) withg = 0.
Uniqueness for this problem implies that (D ~� ) vanishes inW n  , which leads to ~� = 0
on @D, that is � = 0 on  . This proves that T is injective.
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Let us consider the second assertion. For� 2 ~H
1
2 ( ) let us denoteu := D � , where the

potential D is given by

(D � )(x) :=
Z


� (y)

@G(x; y)
@�(y)

ds(y); x 2 W n : (9)

First we notice that

h(ImT )�; � i = Im hT �; � i :

By using the weak formulation (5), we have

hT �; � i =
Z


@� u(u+ � u� ) ds = �

Z

WR

(jr uj2 � k2juj2) dx +
Z

S� R

T� uu ds:

It comes from the de�nition of operatorsT� that
Z

S� R

T� uu ds =
X

n> 0

i� n j(u; � n )S� R j2;

which from (3) implies that

Im hT �; � i =
npX

n=1

p
k2 � k2

n j(u; � n )S� R j2;

and the conclusion follows.
Let us consider the third assertion. To prove it, we write

(FN �; h )L 2 (Ŝ) =
Z

Ŝ

� Z


� (x)

@G(y; x)
@�(x)

ds(x)
�

h(y) dy

=
Z


� (x)

� Z

Ŝ

@G(y; x)
@�(x)

h(y) dy
�

ds(x):

Here we use the fact thatG(x; y) = G(y; x) for all x; y 2 W (in view of (7)). Then

(FN �; h )L 2 (Ŝ) =
Z


� (x)

� Z

Ŝ

@G(x; y)
@�(x)

h(y) dy
�

ds(x)

=
Z


� (x)

 Z

Ŝ
h(y)

@G(x; y)
@�(x)

dy

!

ds(x) =


�; H N h

�
~H

1
2 ( );H � 1

2 ( )
;

and the thesis follows.
The fourth assertion is obvious.
Let us consider the last assertion. ThatGN is a compact operator results from the fact that
the trace onŜ of the solution to the Neumann crack problem (4) belongs toH

1
2 (Ŝ), and the

mapping H
1
2 (Ŝ) ! L2(Ŝ) is compact. Now let us prove injectivity. Assume thatGN g = 0

for someg 2 H � 1
2 ( ) and let us denote byu the solution of the Neumann crack problem

(4) associated with datag. Since the trace ofu on SR vanishes, from lemma 3.1 and unique
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continuation it follows that u vanishes inW n , and then g = 0, which ends the proof. That
GN has dense range is equivalent to the fact thatFN has dense range from assertions (i )
and (iv ), and to the fact that H N is injective from assertion (iii ). Assume that H N h = 0
for someh 2 L2(Ŝ). This implies that the function

vh(x) :=
Z

Ŝ
h(y)G(x; y) ds(y); x 2 WR n 

solves the Neumann crack problem (4) withg = 0. Then vh = 0 in WR n  . By using some
decompositionh = ( h� ; h+ ) 2 L2(S� R) � L2(SR) with h� =

P
n> 0 h�

n � n and h+ =
P

n> 0 h+
n � n

as well as the expression of the Green function given by (7), we obtain that for all x in WR n

vh(x) = �
X

n> 0

h�
n

2i� n
ei� n (R+ x3 ) � n (xS) �

X

n> 0

h+
n

2i� n
ei� n (R� x3 ) � n (xS):

Since the� n form a transverse basis, we obtain that for alln > 0

h�
n ei� n x3 + h+

n e� i� n x3 = 0

for an open interval ofx3. Given assumption 2.1 it follows thath�
n = h+

n = 0 for all n > 0,
and then h = 0, which completes the proof of the last assertion.

3.2. The sampling methods

We now introduce the Linear Sampling Method and the Factorization Method. The subscript
N refers to the Neumann crack problem, whileD refers to the Dirichlet crack problem. We
hence de�ne the near �eld operatorsFN ; ~FN : L2(Ŝ) ! L2(Ŝ) such that

(FN h)(x) :=
Z

Ŝ
us

N (x; y)h(y) ds(y); x 2 Ŝ (10)

( ~FN h)(x) :=
Z

Ŝ
~us

N (x; y)h(y) ds(y); x 2 Ŝ; (11)

where us
N (�; y) and ~us

N (�; y) are the Neumann scattered �elds associated withui = G(�; y)
and ui = G(�; y), respectively, that is the solutions of the Neumann crack problem (4) with
g = � @� G(�; y)j  and g = � @� G(�; y)j  , respectively.
We have the following factorization for the Neumann crack problem.

Proposition 3.3. The near �elds FN and ~FN given by (10) and (11) have the factorization
forms

FN = � GN T �
 G�

N ; ~FN = � GN T �
 G�

N :

Proof. The proof immediately follows from the obvious identities

FN = � GN H N ; ~FN = � GN H N ;

and on assertions (iii ) and (iv ) of lemma 3.2.
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The following proposition will enable us to choose the correct test function in the sampling
formulations.

Proposition 3.4. For some crackL, let us denote byF L
N : ~H

1
2 (L) ! L2(Ŝ) the analogue of

FN when  is replaced byL. For some continuous functions� 2 ~H
1
2 (L) satisfying j� j > 0

on L, for the Neumann crack problem we have

L �  if and only if F L
N � 2 R(GN ):

Remark 3.5. We should notice that existence of a function� de�ned as in the above
proposition is not so easy. Such a function� shall vanish on@Lin a suitable way (see
theorem 1.2.16 in [15]).

Proof. The proof is very similar to that of lemma 8.43 in [11]. Note that from lemma 3.2,
sinceT is an isomorphism andFN = GN T , we have that R(GN ) = R( FN ).
First, if L �  , then since ~H

1
2 (L) � ~H

1
2 ( ), we immediately haveF L

N � 2 R(FN ).
Conversely, if L 6�  , let us assume thatF L

N � = FN � for some � 2 ~H
1
2 ( ). The two

potentials (D � ) given by (9) and

DL (x) :=
Z

L
� (y)

@G(x; y)
@�(y)

ds(y); x 2 W n L

both satisfy the system given in the statement of lemma 3.1 for h := F L
N � = FN � . By lemma

3.1 the functionsDL and (D � ) coincide onS � (R; + 1 ), and by unique continuation they
coincide onW n ( [ L). Now let x0 2 L such that x0 =2  . Let B(x0; ") an open ball such
that B(x0; ") \  = ; and B(x0; ") \ @DL � L , whereDL is the closed manifold that contains
L following the de�nition of crack L. The function D � is smooth in B(x0; ") while the
function DL is singular at the point x0 sincej� j � c > 0 on B(x0; ") \ L . HenceL �  , and
sinceL and  are open sets,L �  .

We are now in a position to state the main theorem that justi�es the use of the Linear
Sampling Method (part (i ) of the theorem) and the Factorization method (part (ii ) of the
theorem) for the Neumann crack problem. The Linear Sampling Method (resp. Factorization
Method) consists, for some test crackL, to check if the associated test functionF L

N � belongs
or not to the range of operatorFN (resp. ~F }

N ), the both operators depending only on the
data. In the present paper, we have chosen to characterize such a range test with the help
of the Tikhonov regularization.
In this view, for a linear bounded operatorF : V ! V, let us consider the operator
T" (F ) : V ! V associated with the Tikhonov regularization of operatorF for parameter
" > 0, namely

T" (F ) := ( "I + F � F )� 1F � ;

11



whereI is the identity operator on V. In addition, for a selfadjoint operatorF , we consider
the selfadjoint operatorF } : V ! V , de�ned by

F } :=
p

jReF j + jImF j:

Theorem 3.6. Let FN : L2(Ŝ) ! L2(Ŝ) and ~FN : L2(Ŝ) ! L2(Ŝ) be the near �eld operators
de�ned by (10) and (11) withus

N (�; y) and ~us
N (�; y) being the solution of the Neumann crack

problem (4) with g = � @� G(�; y)j  and g = � @� G(�; y)j  for y 2 Ŝ, respectively. Let us
de�ne, for some continuous function� 2 ~H

1
2 ( ) with j� j > 0 on L, the test function

(F L
N � )(x) :=

Z

L
� (y)

@G(x; y)
@�(y)

ds(y); x 2 Ŝ:

For

h" := T" (FN )(F L
N � ) and ~h" := T" ( ~F }

N )(F L
N � );

(i) L 6�  implies that lim
" ! 0

jjh" jjL 2 (Ŝ) = + 1 :

(ii) L �  if and only if lim
" ! 0

jj~h" jjL 2 (Ŝ) < 1 :

To prove the second part of the above theorem, we will need thefollowing abstract theorem,
which is proved in [16, 19] with weaker assumptions.

Theorem 3.7. Let X � U � X � be some Hilbert spaces such that each embedding is dense.
Furthermore, let V be another Hilbert space which we identify to its dualV � , and F : V ! V,
H : V ! X and T : X ! X � be linear and bounded operators withF = H � TH. We make
the following assumptions:

(i) H is compact and injective.

(ii) ReT has the formReT = T0 + T1 with some selfadjoint and coercive operatorT0 and
some compact operatorT1 : X ! X � .

(iii) ImT is non negative onX , that is h(ImT)�; � i � 0, for all � 2 X .

(iv) T is injective.

Then the operatorF } is a selfadjoint, positive operator and the ranges ofH � : X � ! V and
F } : V ! V coincide.

Proof of theorem 3.6. We �rst recall the following standard result concerning theTikhonov
regularization of a compact operatorF : V ! V which is injective and has dense range (see
for example [20]): lim" ! 0 jjT" (F )(f )jjV exists for all f 2 V and

f 2 R(F ) i� lim
" ! 0

jjT" (F )(f )jjV < + 1 : (12)

Let us prove the �rst assertion. From proposition 3.4,L 6�  implies that F L
N � =2 R(GN ),

and from proposition 3.3 thatF L
N � =2 R(FN ). We remark from lemma 3.2 and proposition

3.3 that FN is compact, injective with dense range. We hence complete the proof by using

12



(12) for F = FN .
Let us prove the second assertion. The combination of proposition 3.3, proposition 3.4 and
theorem 3.7 in the particular caseU = L2( ), X = ~H

1
2 ( ), V = L2(Ŝ), F = ~FN , H = G�

N

and T = � T �
 proves that

L �  i� f 2 R( ~F }
N ):

We simply have to verify the four assumptions of theorem 3.7.The assumption (i ) is justi�ed
by the last statement of lemma 3.2. By using the decomposition T = T ; 1 ;i + ( T � T; 1 ;i )
already used in the proof of lemma 3.2, we have Re (� T �

 ) = � T; 1 ;i � Re (T � T; 1 ;i ),
where the selfadjoint operatorT; 1 ;i satis�es h� T; 1 ;i �; � i � cjj � jj2

~H
1
2 ( )

for all � 2 ~H
1
2 ( )

and Re (T � T; 1 ;i ) is compact. Assumption (ii ) is then satis�ed. The assumption (iii )
follows from the second assertion of lemma 3.2:



(Im( � T �

 )) �; �
�

= h(ImT )�; � i � 0:

Lastly, assumption (iv ) is a consequence of the �rst statement of lemma 3.2. We complete
the proof by using (12) forF = ~F }

N .

Remark 3.8. It should be noticed that the justi�cation is rigorous concerning the
Factorization Method, while it is only partial concerning the Linear Sampling Method, since
nothing is said about the caseL �  . What we can prove is that ifL �  , then for all " > 0
there exists a solutionh" 2 L2(Ŝ) of the inequality jjFN h" � F L

N � jjL 2 (Ŝ) � " such that the

function H N h" converges inH � 1
2 ( ) as " ! 0.

Concerning the Dirichlet crack problem, with the same analysis as above we can establish a
similar theorem as 3.6 but we shall consider the near �elds operator FD and ~FD associated
with the solutions us

D (�; y) and ~us
D (�; y) of the Dirichlet crack problem (4) with f = � G(�; y)j 

and f = � G(�; y)j  for y 2 Ŝ, respectively, and as in [11] we shall use the test function de�ned
by

(F L
D � )(x) :=

Z

L
� (y)G(x; y) ds(y); x 2 Ŝ;

for some continuous function� 2 ~H � 1
2 ( ) with j� j > 0 on L.

Note that in such case the isomorphismT involved in the proposition 3.3 is replaced by the
isomorphismS : ~H � 1

2 ( ) ! H
1
2 ( ) de�ned by

(S  )(x) :=
Z


 (y)G(x; y) ds(y); x 2 :

Remark 3.9. It results from the above analysis that when the boundary condition on the
crack is a priori known to be of Dirichlet type or a priori knownto be of Neumann type,
the test function used in the sampling method has to be adjusted to such boundary condition:
it should be what we will call the Dirichlet test functionF L

D � for the Dirichlet crack, while
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it should be the Neumann test functionF L
N � for the Neumann crack. We will see in the

numerical experiments that the right choice of such test function is very important to obtain
a correct image of the crack. We should also note that when theboundary condition is
unknown or in the case of an impedance boundary condition like in [11, 3], both the Dirichlet
and Neumann test functions have to be used simultaneously.

For sake of convenience, in the following we only test in�nitesimal cracksL at point z 2 W
oriented by normal � (z), with

R
L � ds =

R
L � ds = 1, so that we make the approximations

F L
D � ' f z

D := G(�; z); F L
N � ' f z

N := r zG(�; z) � � (z): (13)

Hence, in the case of the Dirichlet crack problem, the Linear Sampling Method (resp.
Factorization Method) consists in computing, for all sampling points z 2 WR and small
parameter " , the L2(Ŝ) function h" = T" (FD )( f z

D ) (resp. ~h" = T" ( ~F }
D )( f z

D )), and then in
plotting 1=jjh" jjL 2 (Ŝ) (resp. 1=jj~h" jjL 2 (Ŝ)) as a function of z. Following theorem 3.6, such
function vanishes in the complementary domain of the crack.
The case of the Neumann crack problem is more complicated since the unit normal to the
crack � (z) is unknown. Let us consider the case of the Linear Sampling Method. Following
the idea introduced in [3], for all sampling pointsz 2 WR , we replace� (z) in the de�nition
of f z

N by a polarization vector p. For all p = ei , i = 1; 2; 3, we compute theL2(Ŝ)
functions h";i = T" (FN )( f z

N;i ) with f z
N;i := r zG(�; z) � ei and lastly use the decomposition

� (z) = p1 e1 + p2 e2 + p3 e3 and the linearity of the operatorT" (FN ) to obtain

h" = p1 h"; 1 + p2 h"; 2 + p3 h"; 3: (14)

In the spirit of theorem 3.6, the vector (p1; p2; p3) is computed by minimizingjjh" jjL 2 (Ŝ) with

constraint
p

p2
1 + p2

2 + p2
3 = 1. As for the Dirichlet case, we �nally plot 1=jjh" jjL 2 (Ŝ) as a

function of z with polarization p set to the obtained optimal value at pointz. Of course, the
same process can be applied to the Factorization Method.

3.3. The modal formulation

Let us go back to our inverse problem (IP), which requires to express the functionsus
D (�; y),

us
N (�; y), ~us

D (�; y), ~us
N (�; y) for y 2 Ŝ only in terms of the scattered �elds u�

n which are
associated with the incident waves formed by the guided modes g�

n for the Dirichlet or
Neumann crack problem. Whenever it is possible, the subscripts D and N will be omitted
hereafter in order to shorten notations.
In the following lemma, we �rst give an expression of the Green function (7) and its complex
conjugate only in terms of the guided modesg�

n .
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Lemma 3.10. For all x 2 WR , we have

G(x; y) =

8
>>><

>>>:

�
X

n> 0

1
2i� n

g+
n (x)g�

n (y); 8y 2 S� R ;

�
X

n> 0

1
2i� n

g�
n (x)g+

n (y); 8y 2 SR ;

G(x; y) =

8
>>><

>>>:

X

0<n � np

1
2i� n

g�
n (x)g+

n (y) �
X

n>n p

1
2i� n

g+
n (x)g�

n (y); 8y 2 S� R ;

X

0<n � np

1
2i� n

g+
n (x)g�

n (y) �
X

n>n p

1
2i� n

g�
n (x)g+

n (y); 8y 2 SR :

The proof is straightforward and results from the expression of the � n (3). We can see that
taking the conjugate of the Green function has no e�ect on theevanescent part of the sum
while, up to a change of sign, it interchanges the role of the propagating modes traveling
from the left to the right and the propagating modes traveling from the right to the left.
The previous lemma implies that ifus(�; y) and ~us(�; y) denote the scattered �eld associated
with the incident wavesG(�; y) and G(�; y), by linearity we immediately obtain the

Proposition 3.11. For all x 2 WR , we have

us(x; y) =

8
>>><

>>>:

�
X

n> 0

1
2i� n

u+
n (x)g�

n (y); 8y 2 S� R ;

�
X

n> 0

1
2i� n

u�
n (x)g+

n (y); 8y 2 SR ;

~us(x; y) =

8
>>><

>>>:

X

0<n � np

1
2i� n

u�
n (x)g+

n (y) �
X

n>n p

1
2i� n

u+
n (x)g�

n (y); 8y 2 S� R ;

X

0<n � np

1
2i� n

u+
n (x)g�

n (y) �
X

n>n p

1
2i� n

u�
n (x)g+

n (y); 8y 2 SR :

From proposition 3.11, we are now able to derive some explicit expressions of near �eld
operatorsF and ~F (for either Dirichlet or Neumann crack problems) in terms of the data
u�

n jŜ. In this view we use the following decomposition of such datain the transverse basis
� m of L2(S� R).

u+
n jS� R =

X

m> 0

(U+
n )�

m � m ; u�
n jS� R =

X

m> 0

(U�
n )�

m � m ;

u+
n jSR =

X

m> 0

(U+
n )+

m � m ; u�
n jSR =

X

m> 0

(U�
n )+

m � m :

Using then the decompositionh = ( h� ; h+ ) 2 S� R � SR with

h� =
X

m> 0

h�
m � m ; h+ =

X

m> 0

h+
m � m ;
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we obtain after easy computations (see [10]) the following expression of operatorsF and ~F :
8
>>><

>>>:

(Fh)jS� R = �
X

m> 0

X

n> 0

ei� n R

2i� n

�
(U+

n )�
m h�

n + ( U�
n )�

m h+
n

�
� m ;

(Fh)jSR = �
X

m> 0

X

n> 0

ei� n R

2i� n

�
(U+

n )+
m h�

n + ( U�
n )+

m h+
n

�
� m ;

8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

( ~Fh)jS� R =
X

m> 0

X

0<n � np

e� i� n R

2i� n

�
(U�

n )�
m h�

n + ( U+
n )�

m h+
n

�
� m

�
X

m> 0

X

n>n p

ei� n R

2i� n

�
(U+

n )�
m h�

n + ( U�
n )�

m h+
n

�
� m ;

( ~Fh)jSR =
X

m> 0

X

0<n � np

e� i� n R

2i� n

�
(U�

n )+
m h�

n + ( U+
n )+

m h+
n

�
� m

�
X

m> 0

X

n>n p

ei� n R

2i� n

�
(U+

n )+
m h�

n + ( U�
n )+

m h+
n

�
� m :

Similarly, we obtain from lemma 3.10 the following expansions of the test functionsf z
D and

f z
N :

8
>>><

>>>:

f z
D jS� R = �

X

m> 0

�
ei� m (R+ z3 )

2i� m
� m (zS)

�
� m ;

f z
D jSR = �

X

m> 0

�
ei� m (R� z3 )

2i� m
� m (zS)

�
� m :

8
>>><

>>>:

f z
N jS� R = �

X

m> 0

�
ei� m (R+ z3 )

2i� m
(r S� m (zS) � � S(z) + i� n � m (zS)� 3(z))

�
� m ;

f z
N jSR = �

X

m> 0

�
ei� m (R� z3 )

2i� m
(r S� m (zS) � � S(z) � i� n � m (zS)� 3(z))

�
� m ;

where r S� denotes the surface gradient in a transverse section. The far �eld formulation
consists then to restrict the sums that are involved in the de�nition of near �eld operators
F and ~F to the np �rst terms, since np is the number of propagating modes, as well as
in the sum involved in the de�nition of the test functions f z

D and f z
N . We hence drop the

data associated with the evanescent modes. The inuence of such evanescent modes on the
quality of identi�cation is studied in [10] for soft impenetrable obstacles.

3.4. Some numerical experiments

In our numerical experiments, we consider a 2D waveguide of section S = ( � 1; 1), and we
apply both the Linear Sampling Method and the FactorizationMethod in the particular
case of the modal far �eld formulation, the number of propagating modesnp being given as
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a function of the wavenumberk. In practice, the data u�
n jS� R and u�

n jSR are contaminated
by some noise of amplitude� , and the parameter" in the Tikhonov regularization is chosen
as a function of� following the Morozov's strategy introduced in [14] in the framework of
the Linear Sampling Method. In our modal far �eld formulation, we exactly use the same
Morozov's technique as in [10] to choose". The synthetic data u�

n are obtained by using a
�nite element approximation of the weak formulation (5) of problem (4). Precisely, we used
classical Lagrange triangles based on a mesh which is su�ciently re�ned to be acceptable
for the larger wavenumberk we consider in our numerical experiments. The arti�cial noisy
data are produced by applying to each exact data ^u = u�

n jŜ for n = 1; � � � ; np some pointwise
Gaussian noise which is then calibrated in order to obtain some noisy dataû� satisfying

jj û� � ûjjL 2 (Ŝ) = � = � jj ûjjL 2 (Ŝ) ;

where � is some prescribed relative amplitude of noise. In �gure 1, we show the results
obtained by using the Factorization Method (based on~F ), in the case of a Dirichlet or a
Neumann curved crack. The Linear Sampling Method produces similar results. Here we
have usednp = 16 propagating modes and exact data. In both cases, we applythe Dirichlet
test function f z

D and the Neumann test functionf z
N , and in this last case we apply our

optimization technique to �nd the local normal to the crack. Note that in our 2D case, the
decomposition (14) amounts toh" = (cos � ) h"; 1 + (sin � ) h"; 3, where (�= 2 � � ) is the angle
between the direction of propagatione3 and the polarization vectorp. The optimal value
of � is obtained by an elementary calculation. In the �gure 1, thepolarization vector p
associated with such optimal� is represented on the crack. Those results emphasize the fact
that for a Dirichlet crack problem, a Dirichlet test function has to be used, and similarly for
a Neumann crack problem, a Neumann test function has to be used.We obtain poor results
in the other cases.

Remark 3.12. We remark that the result for identi�cation is better for theDirichlet crack
and the Neumann test function than for the Neumann crack and the Dirichlet test function.
This is due to the fact that for small crackL at point z, by a �rst order Taylor expansion
we obtain

F L
D � =

Z

L
� (y)G(�; y) ds(y) �

Z

L

�
� (y)G(�; z) + � (y)

@G(�; z)
@�(z)

(y � z)
�

ds(y);

where� is the unit tangent vector to the crack, and lastly

F L
D � � G(�; z) + � 1(z)r zG(�; z) � � (z); � 1(z) :=

Z

L
� (y)(y � z) ds(y):

As a result, the Neumann test function may be used for the Dirichlet crack, but the optimal
polarization p(z) coincides with the tangent unit vector� (z) instead of the normal unit vector
� (z), as con�rmed on the top right part of �gure 1.
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Figure 1. Top left: Dirichlet crack and Dirichlet test function, Top r ight: Dirichlet
crack and Neumann test function (optimal polarization is represented in red), Bottom left:
Neumann crack and Dirichlet test function (the real crack is represented in blue), Bottom
right: Neumann crack and Neumann test function (optimal polarization is represented in
red).

In �gure 2 we study the inuence of the frequency, that is in other words, the inuence of
the number of propagating modes. The data are free of noise. We only consider the case of
the Linear Sampling Method (results obtained with the Factorization Method are similar)
for a set of two curved Dirichlet cracks, and for the suitableDirichlet test function. The
results of �gure 2 correspond tonp = 4, np = 10, np = 16 and np = 23 and show that the
higher isnp, the better is the result with a saturation e�ect for too high np, which is due to
the discretization.
In �gure 3 we study the inuence of the amplitude of noise, fora given number of propagating
modesnp = 16. We only consider the case of the Linear Sampling Method for a set of
two curved Neumann cracks, and for the suitable Neumann test function with optimal
polarization. The results of �gure 3 correspond to� = 0:01, � = 0:1, � = 0:2 and � = 0:5.
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Figure 2. Top left: np = 4 (the real cracks are represented in blue), Top right: np = 10,
Bottom left : np = 16, Bottom right: np = 23

They show that the sampling methods are very robust with respect to a Gaussian noise. It
may be surprising that, even with a 50%-noise level, the reconstruction be satisfactory. This
is due to the way we produce the noise: the amplitude of noise is large with respect to theL2

norm but the noisy data is strongly oscillating around the exact data, so that its projection
on the modes tends to smooth them a lot. The reader can see in [10] an example of noisy
data produced by our method compared to the exact one.
We complete the numerical section by a comparison on �gure 4 between the Linear Sampling
Method and the Factorization Method for a set of two Dirichlet or Neumann cracks that are
close to each other. This is a complex situation since waves are likely to be trapped between
these two cracks and therefore the sampling methods cannot easily separate the two cracks.
The data are free of noise andnp = 16. We conclude from �gure 4 that from a numerical
point of view, the quality of the identi�cation produced by the two sampling methods are
approximately the same, even if the theoretical justi�cation is rigorous only in the case of
the Factorization Method (see remark 3.8).
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Figure 3. Top left: � = 0 :01, Top right : � = 0 :1, Bottom left: � = 0 :2, Bottom right :
� = 0 :5
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