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Abstract. We consider the identi cation of cracks in an acoustic 2D/3D waveguide with
the help of sampling methods such as the Linear Sampling Meibd or the Factorization
Method. A modal version of these sampling methods is used. Qupaper emphasizes the
fact that if one a priori knows the type of boundary condition which actually applieson
the crack, then we shall adapt the formulation of our samplirg method to such boundary
condition in order to improve the e ciency of the method. The need for such adaptation is
proved theoretically and illustrated numerically with the help of 2D examples. We also show
by using our modal formulation that the Factorization Metho d is applicable in a waveguide
with the same data as the Linear sampling Method.

1. Introduction

Inverse scattering consists in identifying some obstacleithin a reference domain by
measuring the scattered waves which result from the interaon between several known
incident waves and this obstacle. The so-called \qualitate” or \sampling” methods

introduced in [13] and [16] have considerably improved imse scattering in acoustics,
electromagnetism and elasticity, in particular in the fregency domain. These techniques
have reached a high level of performance and generality, asncbe seen in the recent
monographs [11] and [17] that are devoted to the Linear Sanmmpj Method and the

Factorization Method, respectively. There are two speciatases which introduce some
additional complexity in the application of the sampling méods. The rst one concerns

the obstacles with empty interior, that is cracks. In such cse, the justication of the

sampling method is a bit more di cult than with impenetrable obstacles with non empty
interior [18, 11], particularly when the crack is charactezed by an impedance condition
[3]. The second concerns domains which are bounded in one wp tdirections of space,
that is waveguides. In such case, the identi cation of obstdes with qualitative methods

is more challenging than in free space, because the scattkreld contains an evanescent
part that decays exponentially at long distance [10]. The of an acoustic waveguide
which is bounded in two directions is addressed in [23, 12,]1@hile the case of an acoustic



waveguide which is bounded in one direction is treated in [24]. The case of an elastic
waveguide which is bounded in two directions is analyzed i8][ Another issue arising in the
case of waveguides is the fact that strictly speaking the Raxization Method is applicable
only by using incident waves that are \unphysical" since thg are de ned as the complex
conjugate of a point source. Such point is raised in [17] (sparagraph 1.7) and discussed
in detail in [1].

Our paper concerns the identi cation of cracks in acoustic aweguides, that is we address
the two di culties above at the same time. More precisely, weonsider a modal formulation
of sampling methods, which is speci c to the waveguide geotnge that is the incident waves
do not consist of point sources like in a classical near eldrdmulation but consist of guided
modes. Such modal formulation was rst introduced in [10, 9lor the Linear Sampling
Method in acoustics and extended to elasticity in [8]. The nia advantage of the modal
formulation is that it enables us to properly de ne a far eld formulation, in other words
a formulation which is based on measurements at long distandrom the defects, which
is important for non destructive testing applications. Ourcontribution in acoustics can
be considered as a rst step to address the more realistic anmoteresting problem of the
crack detection in elastic waveguides. Indeed, the indusdt applications in ultrasonic non
destructive testing concern elastic structures, and mosften the expected defect is a crack.
A typical example of application, in rail transport, is the NDT of rails. In nuclear power
plants, there are also a lot of metallic pipes that have to b@spected regularly. Note that the
extension of the modal formulation from acoustics to elasity requires the introduction of
some special vector variables that mix the components of glacement and the components
of the column of the stress tensor which is associated witheldirection of propagation [2].
Since such developments in elasticity are quite technicdhe identi cation of cracks in an
elastic waveguide with the help of a modal formulation of théinear Sampling Method wiill
be explained in a future contribution.

The main objective of the present paper is to emphasize thectahat whenever the boundary
condition on the crack isa priori known then the test function used in the formulation of
the sampling method has to be properly chosen in order to optize the quality of the
reconstruction. This choice is illustrated for cracks thatre known to bea priori of Dirichlet
or Neumann type. In elasticity such choice would be crucial f@pplications. If for instance
we consider non destructive testing for metallic materialshe defects that one tries to identify
are traction free cracks. Hence in this particular case the bodary condition on the crack
is known and sucha priori information has to be taken into account to obtain good restd
for imaging.

A secondary objective of the present paper is to show that viin the formalism of the modal
formulation, we can apply the Factorization Method for a wagguide which is bounded in
two directions by using the same data as for the Linear Sampd Method. This is in contrast
with [12, 1] since in these two papers some \unphysical" ird@nt waves were used in the
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Factorization Method.

Our paper is organized as follows. In section 2 we introdudeet forward and inverse problems.
The Linear Sampling Method and the Factorization Method argéhen introduced in section
3, in particular in the modal form. We complete this section ¥y some numerical experiments.

2. The forward and inverse problems

We consider a waveguide of domaidv = S R in R4 with d =2 or d = 3. In 2D, we
assume thatS = ( h; h), whereh > 0, while in 3D, S is a bounded and open domain d®?,
the boundary of which is smooth and denoted . In the followig, X = ( Xs; X3) will denote
a generic point ofW, wherexs 2 S and x3 2 R.

Let us denote (;k2), n 2 N, the eigenfunctions and eigenvalues of the Neumann eigemal
problem for the negative Laplacian inS. The sequenceé? 2 R* for n 2 N s increasing,
with k; =0and k,! +1 whenn! +1 , and we can choose the, such that they form an
orthonormal basis ofL2(S). It is straightforward to prove that the solutions of the problem

(+ kKHu=0 in W

@u=0 on X (1)

where is the outward unit normal on , are the linear combinations ¢ the so-called guided
modes, which are the functions de ned fon 2 N by

O (XsiXs) = n(xs)e ' ™ 2)
where , is de ned by
[
n= k% k2 Re ,;Im , O (3)

In the following, we assume that
Assumption 2.1. Kk is such that , 6 0 for all n> O.

Thank's to such assumption, the guided modes are divided o, propagating modes, for
which Re ,, > 0, and an in nite number of evanescent modes, for which Im, > 0. More-
over, the guided modes); (respectivelyg, ) are either oscillating or decaying exponentially
from the left to the right of the waveguide (respectively frm the right to the left).

We are now in a position to introduce the forward problem for ¢th the Dirichlet and
Neumann crack problems. Following [11], let us denote bya portion of a smooth nonin-
tersecting curve @ = 2) or surface (d = 3) that encloses a domainD in W, such that its
boundary @ is smooth too @ = 3), with — 2 W. We assume that is an open set with
respect to the induced topology on@D Such a manifold will be called a crack in the
following. The normal vector on is de ned as the outward normal vector toD.

We denote byH %( ) the set of all restrictions to of functions in H %(@D, I—T%( ) the
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subspace oH %( ) which consists of functions on such that their extension by 0 on@D
belong toH %(@ D. We denote byH %( )and H %( ) the dual spaces of:r%( )and H %( ),
respectively (see for example [11]). Note that the spaée %( ) can be identi ed as the set
of all restrictions to  of distributions in H %(@ D, while H %( ) can be identi ed as the
set of all distributions of H %(@D the support of which is contained in—.

Denoting nowSs = S f sg any transverse section, we assume thatlies between sections
S r and Sg, with R > 0. Then W and g denote the portions ofW and which are
limited by S r and Sg. The sequence of eigenfunctions{), and eigenvaluesk?), enables
us to de ne a Dirichlet to Neumann linear and continuous opetar T acting on transverse
sectionsS g, namerXT :H%(S rR)! H %(S r), With for h 2 H%(S R)

T h= i n(h; n)SR n
n>0

where (; )s, is the standard scalar product in_?(S;). Fork > 0,f 2 H %( Jandg2 H %( ),
the forward Dgichlet/Neumann problem we consider inWr N~ is

% (+ kHu=0 in  Wrn—

@u=0 on R
3 U =f or @u =g on “)
: @u=Tu on S g;

whereu and @u denote the trace of functionu and the trace of its normal derivative on
both side of the crack, where the sign is specied by the orientation of the normal on

. The solution of problem (4) is the scattered eldu® associated with the incident eld u'
with f = u'j org= @u'j . The last condition of system (4) is the radiation condition
We have the following theorem.

Theorem 2.2. For f 2 H%( )andg 2 H %( ), the Dirichlet crack problem and the
Neumann crack problem de ned by (4) are well-posed (W n ™), except for at most
a countable set ok.

Proof. The proof is classical (see for example [6, 4]), so that we fjugve a sketch of it, in
the case of the Neumann crack problem. The treatment of the Dehlet case is very similar.
It is easy to prove that an equivalent weak formulation to prblem (4) is:

Find u2V:=HYWgrn™") such that a(u;v)=I(v); 8v2V; (5)
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where the continuous sgsquilinear and antilinear forglsand | are d% ned by

a(u;v) := (rurv k?uv)dx T.uvds T uvds;
Wgrn™ Sr S Rr

z
I(v) := g(vi  V)ds;

where the integrals onS g have the meaning of duality pairing betweert¥ %(S r) and
H %(S r), and the integral on has the meaning of duality pairing betweerH %( ) and
Hz( ).
The sesquilinear forma£1ay be written a= b+ c, with
X
b(u;v) = (ru r v+ uv)dx I n(U; n)s & (V5 n)s as
Wgrn™ n>0

Z
1+ k?) uvdx:

Wgrn™

c(u;Vv) :

The weak formulation (5) is of Fredholm type. Actually, by theRiesz theorem the formb
de nes a isomorphism orV since Rexu;u) |j ujjﬁl(v), while the form ¢ de nes a compact
operator onV since the mappingH(Wr n™) ! L?(Wg n™) is compact. We conclude that
uniqueness implies existence for the problem (4), or equieatly, for problem (5).

Hence, let us assume thati 2 V satis es the weak formulation (5) with g = 0 and let us
choosev = u. Taking the imaginary part of the obtained equation implieghat (u; ,) =0

ay (k;u;v) = uvdx; 8vz2YV; (6)

Wgrn

where = k? and the hermi%ian sesquilinear formay is de ned by
X

ay (k;u;v) = rurvdx+ P k2 k?(u; n)s 5 (V; n)s &:
Wrn™ n>n p

By using again the compactness of the mappitg*(Wgn~) ! L?(Wrn™), well known results
for that kind of variational eigenvalue problems (see for exnple the chapter 6 of [21]) imply
that the eigenvalues satisfying (6) for u 6 0 form a non-negative, increasing sequence
( m)m>0 Which tends to +1 . Moreover such eigenvalues have the following minmax
characterization for allm > 0 (see for example [22]):

»(K) = min vy

Vi V'm v2Vin:ve0 - jVj2 dX

whereV,, denotes the set of alin-dimensional subspaces &f. For any integerm > 0, the
functionk 7! (k)=kis non-increasing from the min max characterization, and continuous
by the same arguments as in [6].



Hence the xed-point equation (k) = k?, n(k)=k = k has exactly one solutiork,, for
eachm. As a conclusion, uniqueness holds except for a set of valué& among thek,,. [I

Remark 2.3. Note that some examples of non uniqueness exist, the non ghimg solutions
of problem (4) forf =0 or g = 0 being called trapped modes. For instance, such trapped
modes are obtained for the Neumann case and horizontal cragi{5].

Hence we introduce the following assumption, which is suppamsto hold throughout this
paper.
Assumption 2.4. Kk is such that problem (4) is well-posed.

We are now in a position to formulate the inverse problem we @arinterested in, with
g =S R[ SR.

The inverse problem (IP). Given the measurements or of the scattered eldsu,
associated with the incident eldsg, for all n > 0, reconstruct the crack .

One should note that in the inverse problem above, the incidewaves do not consist of point
sources as usual, they consist of guided modes. However, asmhin [10], the knowledge
of the scattered elds associated with all point sources lated on $ is equivalent to the
knowledge of the scattered elds associated with all guidedodes. But the choice of guided
modes as incident waves has the following advantage: in piige only the propagating
modesg, , which correspond ton = 1; ;n,, shall be used since the evanescent ones, which
correspond ton > n,, vanish exponentially at long distance. This will hereafteenable us

to establish a far eld formulation of sampling methods.

3. The sampling methods

3.1. Some preliminary results

In order to tackle the inverse problem above, we rst considesome more classical incident
elds u' = G(;y) or u' = G(;y) for somey 2 S, whereG( ;y) denotes the Green function
of the waveguédeW, which solves
2 (+ KHG(;y)= y in Wk
@G(;y)=0 on R
@G(;y)=T G(;y) on Sg;
and is de ned for allx;y 2 W, by
X @ nixa ys3j

G(x;y) = n(Xs) n(Ys): (7)

n>0
In the following, we detail the justi cation of sampling methods only in the case of the
Neumann crack problem, the case of the Dirichlet crack prolstewould be treated similarly.
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It should be noticed that, strictly speaking, the Neumann crek problem is neither addressed
in [11] nor in [3]. Let us now introduce some integral operate. We rst de ne the
hypersingular operatorT : Hz(@D! H z(@D by

Z
. @ Q@G&x;Y) . :
T (x):= @ oo (y) @) ds(y); x2 @D;
as well as its restrictions toZ, namely T : I—T%( )!' H %( ), with
- @ Q@G&x;y) . :

We also de ne the auxiliary operatorGy : H %( ) ! L%(S) which mapsg 2 H %( ) into
the trace on$ of the solution of the Neumann crack problem (4) with datay, as well as the
integral operatorsFy : I—T%&) I L2(S)and Hy :L2%(8)! H () such that

Q@&xy)
F X) =
(Fn (%) (v) @)
Q@G&x;y)
@ (x)
In order to prove some properties of the above operators, weed a unique continuation
lemma, which is proved in [10].

ds(y); x2 S;

Z
(Hnh)(x) = ) h(y) ds(y); x2 :

Lemma 3.1. EI;or als>R andh 2 H %(SR), the following problem without the crack
% (+ kHu=0 in S (R;s)
@u=0 on (R;s)
§ u=h on Sk
: @u=T,u on Ss

has a unique solution ir‘Hxl(S (R;s)), which is given by
U(Xs; X3) = (h; n)ss€ "3 B (xs):
n>0
We are now in a position to prove some useful properties of gpors T , Fy, Hy and Gy .
In this view we recall the following de nitions: for some opetor F,

F+F F F
ReF = ; ImF = —,
2 M 7
whereF denotes the adjoint ofF, and fo&a selfadjoint operatorfF,
+1 +1
if F = dE ; jFj:= j JdE ;
1 1

whereE is the spectral family associated with the operatoF .
Lemma 3.2. The following assertions hold true under assumptions 2.1 &2.4.

(i) The operator T is an isomorphism.



(i) The operator ImT is non negative onFr%( ), that is
. 1 .

hImT ) i, Sy 0, 8 2HZ():

(iii) The operators Fy and Hy satisfy Fy = Hy.

(iv) The operatorsFy, Gy and T satisfyFy = Gy T .

(v) The operator Gy is compact, injective with dense range.

Proof. Let us consider the rst assertion. The proof follows that ofemma 8.33 in [11]. We
consider the operatofT; (resp. T.; ) the analogue of operatofT (resp. T ) with the kernel
G replaced by , where is the radiating Green's function of the Helmholtz equation in free
spaceRY. The analogues of operator§; andT.; in the special casé = i are denotedT; ;
andT., ;. Forany 2 I—T%( ), let us denote ~ its extension by 0 inH %(@D. We hence

have
D E

hTopq: | S :
T 2mEO) "W benmben

By theorem 1.26 in [17], T, ; is a selfadjoint and coercive operator, so we have for some
constantc > 0

h Tt s, ST 0 = Cll %, )
which proves thatT.; . is an isomorphism. The operatorT T.; ) has a smooth kernel
and therefore is compact. By using the decomposition = T ; ;+(T T.1;), itis hence
su cient to prove that T is injective.

Let us assume that for 2 I—T%( ) we haveT = T~ = 0. We de ne the double layer
potential .
—on @EX;Y)
D ) (x) := ———=2ds(y); Xx2Wn@D:
(D)(x) b $%) @y (Y)

and the analogue operatoD; when the kernelG is replaced by . Since the kernel of
(D D ;) is smooth, the function (D D ;)7) and its normal derivative are continuous
across@D which from classical jump relationship for double layer gential D; (see for
example [11]) implies

“=(D1 )+ (D17 =(D)+ (D7) ;
T7=@D7)+ = @D") :

Since T~ = 0, the function (D ") solves the Neumann crack problem (4) withg = O.
Uniqueness for this problem implies that D ©) vanishes inW n—, which leads to "= 0
on@Dthatis =0on . This proves thatT is injective.



Let us consider the second assertion. For 2 I—T%( ) let us denoteu := D , where the
potential D is given by

Z
(D )(x):= (y)
First we notice that
A(ImT); i=Imhl ; i:

By using the weak formuzlation (5), we have

@®x;y)
@(y)

ds(y); x2Wn~ 9)

Z
hT ; i= @u(Uy U)ds= (r Uiz Kk%uj?) dx + T uuds:
WR S R
It comes fromZthe de nition of operatorsT that
X
T utuds= i nj(U; n)s %
S R n>0
which from (3) implies that
XP p
ImhT ; i= k2 K2j(u; n)s &%
n=1
and the conclusion follows.
Let us consider the third assertion. To prove it, we write
@G@y;x) oY
Fyih) oa = X ds(x) h(y)d
z Z
@Q®Y;X) 7
= X h(y)dy ds(x):
() Tgoy "Wy ds
Here we use the fact thatG(x;y) = G(y;x) for all x;y 2 W (in view of (7)). Then
2 ‘ QExy)
Fnihieg = (0 “goy NO)dy ds
z 77—
_ @Gx;y) _ O :
=00 TGty dsb) = NN Ly

and the thesis follows.

The fourth assertion is obvious.

Let us consider the last assertion. ThaGy is a compact operator results from the fact that
the trace on$ of the solution to the Neumann crack problem (4) belongs td z($8), and the
mapping H %(é) I L2(8) is compact. Now let us prove injectivity. Assume thatGyg = 0
for someg 2 H %( ) and let us denote byu the solution of the Neumann crack problem
(4) associated with datag. Since the trace ofu on Sg vanishes, from lemma 3.1 and unique



continuation it follows that u vanishes inW n—, and theng = 0, which ends the proof. That
Gy has dense range is equivalent to the fact thdy has dense range from assertions) (
and (iv), and to the fact that Hy is injective from assertion {ii ). Assume thatHyh =0

for someh 2 L%($). Th%s implies that the function

Vh(X) := ) h(y)G(x;y)ds(y); x2 Wgn—

solves the Neumann crack problem (4) witlg = 0. Then v, =0in Wgr n™. By E,sing some
decompositionh = (h ;h,) 2 L3S g) L?*Sg)withh = h, nandh, = hi
as well as the expression of the Green function given by (7)ewbtain that for all x in Wgn™

X h X ht
Vh(X) = 2i” g n(R+xs) n(Xs) Zin g n(R xs) n(Xs):
n n

n>0 n>0

Since the , form a transverse basis, we obtain that for alh > 0

h,€ "+ hle ' " =0
for an open interval ofx;. Given assumption 2.1 it follows thath, = h’ =0 for all n > 0,
and then h = 0, which completes the proof of the last assertion. O
3.2. The sampling methods

We now introduce the Linear Sampling Method and the Factoraion Method. The subscript
N refers to the Neumann crack problem, whil® refers to the Dirichlet crack problem. We
hence de ne the near eIdZoperatorsFN Frn LAS) ! LZ(S) such that

(Fnh)(x) :

) ul (G Y)h(y) ds(y); x2S (10)
z
. e (G Y)h(y) ds(y); x2 S; (11)

(Fnh)(x)

where ug, (;y) and &%, ( ;y) are the Neumann scattered elds associated with' = G( ;y)
and u' = G( ;y), respectively, that is the solutions of the Neumann crack pblem (4) with
g= @G(;y)j andg= @G(,y)j , respectively.

We have the following factorization for the Neumann crack ptbem.

Proposition 3.3. The near elds Fy and Fy given by (10) and (11) have the factorization
forms

Fv= GnT Gy, Fn= GNT Gy:
Proof. The proof immediately follows from the obvious identities
Fv = GnHn; Fu = GnHy;

and on assertionsi{i ) and (iv) of lemma 3.2. [
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The following proposition will enable us to choose the cowretest function in the sampling
formulations.

Proposition 3.4. For some crackL, let us denote byF; : H%(L) I L%(S) the analogue of
Fn when s replaced byL. For some continuous functions 2 H%(L) satisfyingj j> 0
on L, for the Neumann crack problem we have

L if and only if F5 2 R(Gy):

Remark 3.5. We should notice that existence of a function de ned as in the above
proposition is not so easy. Such a function shall vanish on@Lin a suitable way (see
theorem 1.2.16 in [15]).

Proof. The proof is very similar to that of lemma 8.43 in [11]. Note thiafrom lemma 3.2,
sinceT is an isomorphism and~y = Gy T , we have that RGy) = R( Fy).
First, if L , then sinceFr%(L) I—T%( ), we immediately haveF; 2 R(Fy).

Conversely, ifL 6 , let us assume thatF; = Fy for some 2 I—T%( ). The two
potentials (D ) given by (9) and
QEx;y) -
DL (x) = ————==ds(y); x2WnL

both satisfy the system given in the statement of lemma 3.11fth := F; = Fy . By lemma
3.1 the functionsD, and (D ) coincide onS (R;+1 ), and by unigue continuation they
coincide onW n(—[ L). Now let xo 2 L such that xq 2 —. Let B(Xo;") an open ball such
that B(Xo;")\ —=; andB(Xo;")\ @R L, whereD, is the closed manifold that contains
L following the de nition of crack L. The function D is smooth in B(Xp;") while the
function D, is singular at the pointxy sincej j ¢>0onB(Xg;")\ L. HenceL —, and
sinceL and are open setsL . O

We are now in a position to state the main theorem that justi es the use of the Linear
Sampling Method (part (i) of the theorem) and the Factorization method (part (i) of the

theorem) for the Neumann crack problem. The Linear Sampling &hod (resp. Factorization
Method) consists, for some test crack, to check if the associated test functiofr|; belongs
or not to the range of operatorFy (resp. F“ﬁ, ), the both operators depending only on the
data. In the present paper, we have chosen to characterizecBua range test with the help
of the Tikhonov regularization.

In this view, for a linear bounded operatorF : V ! V, let us consider the operator
T-(F) : V! V associated with the Tikhonov regularization of operatoF for parameter

"> 0, namely

T.(F)=(" +F F) 'F ;
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wherel is the identity operator onV. In addition, for a selfadjoint operatorF, we consider
the selfadjoint operatorF} :V ! V, de ned by

F! o= P jReFj + jImFj:

Theorem 3.6. Let Fy : L%(8) ! L%(S) andFy :L2(8)! L2(8) be the near eld operators
de ned by (10) and (11) withu} (;y) and & ( ;y) being the solution of the Neumann crack
problem (4) withg = @G(:;y)] andg = @G(;y)j fory 2 &, respectively. Let us
de ne, for some continuous function 2 Hz( ) withj j > 0on L, the test function

z

Fi 0= g sy x2 8
For

h.:= T.(Fy)(F5 ) and h.:= To(FL)(FS );
(i) L6  impliesthat limjjh-jj o =+1:
(if) L if and only if  lim jjf-jj o) < 1 :

To prove the second part of the above theorem, we will need thalowing abstract theorem,
which is proved in [16, 19] with weaker assumptions.

Theorem 3.7. Let X U X be some Hilbert spaces such that each embedding is dense.
Furthermore, letV be another Hilbert space which we identify to its dusl , andF : V! V,
H:V! XandT:X ! X be linear and bounded operators withk = H TH. We make

the following assumptions:
(i) H is compact and injective.

(i) ReT has the formReT = Ty + T; with some selfadjoint and coercive operatof, and
some compact operatoif; : X ! X .

(i) ImT is non negative onX, thatis (ImT); i O, forall 2 X.

(iv) T is injective.

Then the operatorF! is a selfadjoint, positive operator and the ranges ¢f : X ! V and
F! :V ! V coincide.

Proof of theorem 3.6. We rst recall the following standard result concerning theTikhonov
regularization of a compact operatoF : V ! V which is injective and has dense range (see
for example [20]): lim, o) T-(F)(f)jjv exists for allf 2 V and

f 2R(F) i Ii"rIanjT--(F)(f Jjjv < +1: (12)

Let us prove the rst assertion. From proposition 3.4L 6 implies that F; 2 R(Gy),
and from proposition 3.3 thatF; 2 R(Fy). We remark from lemma 3.2 and proposition
3.3 that Fy is compact, injective with dense range. We hence completeetiproof by using
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(12) for F = Fy.

Let us prove the second assertion. The combination of proptsn 3.3, proposition 3.4 and
theorem 3.7 in the particular casdJ = L2( ), X = Hz( ), V = L%(8), F = Fy, H = G,
andT = T proves that

L i f 2R(F}):

We simply have to verify the four assumptions of theorem 3.7he assumption () is justi ed
by the last statement of lemma 3.2. By using the decompositiol =T ., ;+(T T.1;)
already used in the proof of lemma 3.2, we have ReT )= T.:; Re(T T.1.),
where the selfadjoint operatorT.; ; satisesh T.,.,; i cCjj jjzﬁ%( ) forall 2 Fr%( )
and Re(T  T.; ) is compact. Assumption {i) is then satis ed. The assumption (i)
follows from the second assertion of lemma 3.2:

(Im( T)); =hmT); i O
Lastly, assumption (v) is a consequence of the rst statement of lemma 3.2. We coref#
the proof by using (12) forF = F},. O

Remark 3.8. It should be noticed that the justication is rigorous conaming the
Factorization Method, while it is only partial concerning he Linear Sampling Method, since
nothing is said about the case . What we can prove is that ifL , then forall"> 0
there exists a solutionh- 2 L%(S) of the inequalityjjFyh- F Iy liLzgy " such that the

function Hy h- converges inH %( )as"! O.

Concerning the Dirichlet crack problem, with the same anayts as above we can establish a
similar theorem as 3.6 but we shall consider the near elds epator Fp and Fp associated
with the solutionsug ( ;y) and u ( ;y) of the Dirichlet crack problem (4) withf =  G(;y)j
andf = G(;y)j fory 2 §, respectively, and as in [11] we shall use the test functioe ted

b
Y z

(F5 )(x) = G y) ds(y); x2S

L
for some continuous function 2 B z( ) with j j> 0 onL.

Note that in such case the isomorphisit involved in the proposition 3.3 is replaced by the
isomorphismS : H %( ) !Z H %( ) de ned by

(S )x):= (VG(xy)ds(y); x2 :

Remark 3.9. It results from the above analysis that when the boundary cd@h on the
crack is a priori known to be of Dirichlet type or a priori knownto be of Neumann type,
the test function used in the sampling method has to be adgtsto such boundary condition:
it should be what we will call the Dirichlet test functiofr; for the Dirichlet crack, while
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it should be the Neumann test functiofr; for the Neumann crack. We will see in the
numerical experiments that the right choice of such test fotion is very important to obtain

a correct image of the crack. We should also note that when theundary condition is

unknown or in the case of an impedance boundary conditiondikn [11, 3], both the Dirichlet

and Neumann test functions have to be used simultaneously.

For sake of convenience, in tflyg foIIowir]:g we only test in ngsimal cracksL at point z2 W

oriented by normal (z), with | ds = | ds =1, so that we make the approximations

FS ' 1= G2 By ' fR=1.6(00) (@ (13)

Hence, in the case of the Dirichlet crack problem, the Lineara&pling Method (resp.
Factorization Method) consists in computing, for all samphg points z 2 Wg and small
parameter ", the L2(8) function h. = T-(Fp)(f3) (resp. h- = T--(Pg)(f,g)), and then in
plotting 15jh-jj, 24 (resp. Hjh-jj, 2(4)) as a function ofz. Following theorem 3.6, such
function vanishes in the complementary domain of the crack.

The case of the Neumann crack problem is more complicated ®nhe unit normal to the
crack (z) is unknown. Let us consider the case of the Linear Samplingethod. Following
the idea introduced in [3], for all sampling pointz 2 Wg, we replace (z) in the de nition
of f§ by a polarization vectorp. For all p = e, i = 1;2;3, we compute theL2(S)
functions h+; = T.(Fn)(fg;) with 5, = r ;G(;2) e and lastly use the decomposition

(z) = prey+ p2& + pze; and the linearity of the operatorT-(Fy ) to obtain

h- = prheg+ ppheo + pgheg (14)

In the spirit of theorem 3.6, the vector 01; p;; ps) is computed by minimizingjjh-jj - g, with
constraint = p;+ p3+ p3 = 1. As for the Dirichlet case, we nally plot 15jh-jj .4, as a
function of z with polarization p set to the obtained optimal value at pointz. Of course, the
same process can be applied to the Factorization Method.

3.3. The modal formulation

Let us go back to our inverse problem (IP), which requires toxgress the functionsug ( ;y),
uy (y), e3(sy), ey (y) fory 2 8 only in terms of the scattered elds u, which are
associated with the incident waves formed by the guided moslg, for the Dirichlet or
Neumann crack problem. Whenever it is possible, the subsdagpD and N will be omitted
hereafter in order to shorten notations.

In the following lemma, we rst give an expression of the Greefunction (7) and its complex
conjugate only in terms of the guided modeg, .
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Lemma 3.10. For all x 2 Wg, we have

3 =g (e (V) 8Y2S ;
n
G(x;y) = %1 .
2 =g, ()G (v): 8y 2 Sk
- 50 2,
8 x 1 . X 1,
2 5 ()G () 5% (0% (V) 8y2S &
Gy =, "k™ g "R )
2 GO0 5% (0% () 8y 2 Sk
0<n np n n>n p n

The proof is straightforward and results from the expressiof the , (3). We can see that
taking the conjugate of the Green function has no e ect on thevanescent part of the sum
while, up to a change of sign, it interchanges the role of thergppagating modes traveling
from the left to the right and the propagating modes travelig from the right to the left.
The previous lemma implies that ifu®( ;y) and &#°( ;y) denote the scattered eld associated
with the incident wavesG( ;y) and G( ;y), by linearity we immediately obtain the

Proposition 3.11. For all x 2 Wg, we have

X 1,
3 5 u0g () 8y2S &
us(x;y) = "0
3 5 —Un (08 (V)i 8Y 2 Sk;
n>0 n
COX e X
3 5 ()G (v) 5 U ()G () 8Y2S &
Cooy)= X" g R .
2 U7 ()G (¥) U, (08T ()i 8y 2 Sw:
0<n np n n>n p n

From proposition 3.11, we are now able to derive some expliexpressions of near eld
operatorsF and F (for either Dirichlet or Neumann crack problems) in terms of te data
u,js. In this view we use the following decomposition of such data the transverse basis
m Of L?(S R).

+: X + . X

Unjs R — (Un )m ms unJS R — (Un )m ms
m> 0 m>0

+: X +y+ . X +

Uplsg = (Un )m m, Uplsg = (Un )m m-
m> 0 m>0

Using then the decg)(mpositior‘n =(h ;)?*) 2S g Sgwith
h = hy m; h" = hn m;

m> 0 m>0
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we obtain after easy computations (see [10]) the following@ression of operator$ and F:

_ X X dnR . N
% (Fh)JS R — 2 (Un )m hn +(Un )m hn ms
m> 0.1)> 0 n
§ : X )2 einR +\+ + |t
; (Fh)JSR = 2 (Un )m hn +(Un )m hn ms
m>0n>0 n
8 _ X X iR o
(Fh)JS R — 2l— (Un )m hn +(Un )m hn m
m>00<n np n
ei nR + +
2i (Un )m hn +(Un )m hn ms
m> 0 n>n n
. X X e LR + +\+ |t
% (Fh)JSR = 2l— (Un )m hn +(Un )m hn m
m>00<n np n
ei nR +\+ + |t
- 2 (Un )m hn +(Un )m hn m-
n

m>0n>n p

Similarly, we obtain from lemma 3.10 the following expansis of the test functionsf 5 and
fa:

8 . X el m (R+23)

% f[ZJJS R = 2l— m(ZS) ms
n)1(>0 @ (Rm23)

2 flis, = S (@)
m> 0 m

8 ) X el m (R+23) )

3 flis . = (s m(zs) @+ 0 mzs) @) m
m> 0 m

5 .. X dnR .

> flisy = Zi—(rSm(ZS) s(2) 0nom(zs) 3(2)  ms
m> 0 m

wherer s denotes the surface gradient in a transverse section. The fald formulation
consists then to restrict the sums that are involved in the deition of near eld operators

F and F to the n, rst terms, since n, is the number of propagating modes, as well as
in the sum involved in the de nition of the test functionsfj and f§. We hence drop the
data associated with the evanescent modes. The in uence efch evanescent modes on the
quality of identi cation is studied in [10] for soft impenetable obstacles.

3.4. Some numerical experiments

In our numerical experiments, we consider a 2D waveguide a&ction S = ( 1;1), and we
apply both the Linear Sampling Method and the FactorizationMethod in the particular
case of the modal far eld formulation, the number of propaging modesn, being given as
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a function of the wavenumberk. In practice, the datau,js ., and u,js, are contaminated
by some noise of amplitude, and the parameter” in the Tikhonov regularization is chosen
as a function of following the Morozov's strategy introduced in [14] in theramework of
the Linear Sampling Method. In our modal far eld formulation, we exactly use the same
Morozov's technique as in [10] to choose The synthetic datau,, are obtained by using a
nite element approximation of the weak formulation (5) of poblem (4). Precisely, we used
classical Lagrange triangles based on a mesh which is su oty re ned to be acceptable
for the larger wavenumberk we consider in our numerical experiments. The arti cial n@y
data are produced by applying to each exact data # u,js forn=1; ;n, some pointwise
Gaussian noise which is then calibrated in order to obtain st noisy datau® satisfying

10 O 2= = Ji0jj 28
where is some prescribed relative amplitude of noise. In gure 1,evshow the results
obtained by using the Factorization Method (based o), in the case of a Dirichlet or a
Neumann curved crack. The Linear Sampling Method producesnslar results. Here we
have usedn, = 16 propagating modes and exact data. In both cases, we apyhe Dirichlet
test function f3 and the Neumann test functionf g, and in this last case we apply our
optimization technique to nd the local normal to the crack. Note that in our 2D case, the
decomposition (14) amounts tch- = (cos ) h-1 +(sin ) h-3, where (=2 ) is the angle
between the direction of propagatiore; and the polarization vectorp. The optimal value
of is obtained by an elementary calculation. In the gure 1, thepolarization vector p
associated with such optimal is represented on the crack. Those results emphasize thetfac
that for a Dirichlet crack problem, a Dirichlet test function has to be used, and similarly for
a Neumann crack problem, a Neumann test function has to be usedle obtain poor results
in the other cases.

Remark 3.12. We remark that the result for identi cation is better for theDirichlet crack
and the Neumann test function than for the Neumann crack antié Dirichlet test function.
This is due to the fact that for small crack. at point z, by a rst order Taylor expansion
we obtain

z z @G;2)
Fo = (Y)G(;y) ds(y) WG+ (o 2) ds(y);
L L @(2)
where is the unit tangent vector to the crack, and lastly
Fo GG+ 1(r.G(;2) (2 1(2):= Wy 2)ds(y):

L
As a result, the Neumann test function may be used for the Dihlet crack, but the optimal
polarization p(z) coincides with the tangent unit vector (z) instead of the normal unit vector
(z), as con rmed on the top right part of gure 1.
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Figure 1. Top left: Dirichlet crack and Dirichlet test function, Top r ight: Dirichlet
crack and Neumann test function (optimal polarization is represented in red), Bottom left:
Neumann crack and Dirichlet test function (the real crack is represented in blue), Bottom
right: Neumann crack and Neumann test function (optimal polarization is represented in
red).

In gure 2 we study the in uence of the frequency, that is in oher words, the in uence of
the number of propagating modes. The data are free of noise.e\MInly consider the case of
the Linear Sampling Method (results obtained with the Factazation Method are similar)
for a set of two curved Dirichlet cracks, and for the suitabldirichlet test function. The
results of gure 2 correspond ton, = 4, n, = 10, n, = 16 and n, = 23 and show that the
higher isn,, the better is the result with a saturation e ect for too high n,, which is due to
the discretization.

In gure 3 we study the in uence of the amplitude of noise, foa given number of propagating
modesn, = 16. We only consider the case of the Linear Sampling Methoarf a set of
two curved Neumann cracks, and for the suitable Neumann test rfation with optimal
polarization. The results of gure 3 correspond to =0:01, =0:1, =0:2and =0:5.
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Figure 2. Top left: n, = 4 (the real cracks are represented in blue), Top right: n, = 10,
Bottom left : n, = 16, Bottom right: n, =23

They show that the sampling methods are very robust with reget to a Gaussian noise. It
may be surprising that, even with a 50%-noise level, the ratstruction be satisfactory. This
is due to the way we produce the noise: the amplitude of noiselarge with respect to thel.?
norm but the noisy data is strongly oscillating around the exct data, so that its projection
on the modes tends to smooth them a lot. The reader can see i®][hn example of noisy
data produced by our method compared to the exact one.

We complete the numerical section by a comparison on gure &tween the Linear Sampling
Method and the Factorization Method for a set of two Dirichlé or Neumann cracks that are
close to each other. This is a complex situation since wava dikely to be trapped between
these two cracks and therefore the sampling methods cannaisdy separate the two cracks.
The data are free of noise anah, = 16. We conclude from gure 4 that from a numerical
point of view, the quality of the identi cation produced by the two sampling methods are
approximately the same, even if the theoretical justi catbn is rigorous only in the case of
the Factorization Method (see remark 3.8).
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Figure 3. Top leftt =0:01, Top right : = 0:1, Bottom left: = 0:2, Bottom right :
=05
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